This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This theorem derives ax-dc using ax-ac and ax-inf . Thus,AC impliesDC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axdc | ⊢ ( ( ∃ 𝑦 ∃ 𝑧 𝑦 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑢 𝑥 𝑤 ↔ 𝑢 𝑥 𝑧 ) ) | |
| 2 | 1 | cbvabv | ⊢ { 𝑤 ∣ 𝑢 𝑥 𝑤 } = { 𝑧 ∣ 𝑢 𝑥 𝑧 } |
| 3 | breq1 | ⊢ ( 𝑢 = 𝑣 → ( 𝑢 𝑥 𝑧 ↔ 𝑣 𝑥 𝑧 ) ) | |
| 4 | 3 | abbidv | ⊢ ( 𝑢 = 𝑣 → { 𝑧 ∣ 𝑢 𝑥 𝑧 } = { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) |
| 5 | 2 4 | eqtrid | ⊢ ( 𝑢 = 𝑣 → { 𝑤 ∣ 𝑢 𝑥 𝑤 } = { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑢 = 𝑣 → ( 𝑔 ‘ { 𝑤 ∣ 𝑢 𝑥 𝑤 } ) = ( 𝑔 ‘ { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) ) |
| 7 | 6 | cbvmptv | ⊢ ( 𝑢 ∈ V ↦ ( 𝑔 ‘ { 𝑤 ∣ 𝑢 𝑥 𝑤 } ) ) = ( 𝑣 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) ) |
| 8 | rdgeq1 | ⊢ ( ( 𝑢 ∈ V ↦ ( 𝑔 ‘ { 𝑤 ∣ 𝑢 𝑥 𝑤 } ) ) = ( 𝑣 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) ) → rec ( ( 𝑢 ∈ V ↦ ( 𝑔 ‘ { 𝑤 ∣ 𝑢 𝑥 𝑤 } ) ) , 𝑦 ) = rec ( ( 𝑣 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) ) , 𝑦 ) ) | |
| 9 | 7 8 | ax-mp | ⊢ rec ( ( 𝑢 ∈ V ↦ ( 𝑔 ‘ { 𝑤 ∣ 𝑢 𝑥 𝑤 } ) ) , 𝑦 ) = rec ( ( 𝑣 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) ) , 𝑦 ) |
| 10 | 9 | reseq1i | ⊢ ( rec ( ( 𝑢 ∈ V ↦ ( 𝑔 ‘ { 𝑤 ∣ 𝑢 𝑥 𝑤 } ) ) , 𝑦 ) ↾ ω ) = ( rec ( ( 𝑣 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑣 𝑥 𝑧 } ) ) , 𝑦 ) ↾ ω ) |
| 11 | 10 | axdclem2 | ⊢ ( ∃ 𝑧 𝑦 𝑥 𝑧 → ( ran 𝑥 ⊆ dom 𝑥 → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ) |
| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑦 ∃ 𝑧 𝑦 𝑥 𝑧 → ( ran 𝑥 ⊆ dom 𝑥 → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ) |
| 13 | 12 | imp | ⊢ ( ( ∃ 𝑦 ∃ 𝑧 𝑦 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) |