This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc . (Contributed by Mario Carneiro, 25-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | axdclem.1 | |- F = ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) |
|
| Assertion | axdclem | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` K ) x z ) -> ( K e. _om -> ( F ` K ) x ( F ` suc K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdclem.1 | |- F = ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) |
|
| 2 | neeq1 | |- ( y = { z | ( F ` K ) x z } -> ( y =/= (/) <-> { z | ( F ` K ) x z } =/= (/) ) ) |
|
| 3 | abn0 | |- ( { z | ( F ` K ) x z } =/= (/) <-> E. z ( F ` K ) x z ) |
|
| 4 | 2 3 | bitrdi | |- ( y = { z | ( F ` K ) x z } -> ( y =/= (/) <-> E. z ( F ` K ) x z ) ) |
| 5 | eleq2 | |- ( y = { z | ( F ` K ) x z } -> ( ( g ` y ) e. y <-> ( g ` y ) e. { z | ( F ` K ) x z } ) ) |
|
| 6 | breq2 | |- ( w = z -> ( ( F ` K ) x w <-> ( F ` K ) x z ) ) |
|
| 7 | 6 | cbvabv | |- { w | ( F ` K ) x w } = { z | ( F ` K ) x z } |
| 8 | 7 | eleq2i | |- ( ( g ` y ) e. { w | ( F ` K ) x w } <-> ( g ` y ) e. { z | ( F ` K ) x z } ) |
| 9 | 5 8 | bitr4di | |- ( y = { z | ( F ` K ) x z } -> ( ( g ` y ) e. y <-> ( g ` y ) e. { w | ( F ` K ) x w } ) ) |
| 10 | fvex | |- ( g ` y ) e. _V |
|
| 11 | breq2 | |- ( w = ( g ` y ) -> ( ( F ` K ) x w <-> ( F ` K ) x ( g ` y ) ) ) |
|
| 12 | 10 11 | elab | |- ( ( g ` y ) e. { w | ( F ` K ) x w } <-> ( F ` K ) x ( g ` y ) ) |
| 13 | 9 12 | bitrdi | |- ( y = { z | ( F ` K ) x z } -> ( ( g ` y ) e. y <-> ( F ` K ) x ( g ` y ) ) ) |
| 14 | fveq2 | |- ( y = { z | ( F ` K ) x z } -> ( g ` y ) = ( g ` { z | ( F ` K ) x z } ) ) |
|
| 15 | 14 | breq2d | |- ( y = { z | ( F ` K ) x z } -> ( ( F ` K ) x ( g ` y ) <-> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) |
| 16 | 13 15 | bitrd | |- ( y = { z | ( F ` K ) x z } -> ( ( g ` y ) e. y <-> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) |
| 17 | 4 16 | imbi12d | |- ( y = { z | ( F ` K ) x z } -> ( ( y =/= (/) -> ( g ` y ) e. y ) <-> ( E. z ( F ` K ) x z -> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) ) |
| 18 | 17 | rspcv | |- ( { z | ( F ` K ) x z } e. ~P dom x -> ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) -> ( E. z ( F ` K ) x z -> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) ) |
| 19 | fvex | |- ( F ` K ) e. _V |
|
| 20 | vex | |- z e. _V |
|
| 21 | 19 20 | brelrn | |- ( ( F ` K ) x z -> z e. ran x ) |
| 22 | 21 | abssi | |- { z | ( F ` K ) x z } C_ ran x |
| 23 | sstr | |- ( ( { z | ( F ` K ) x z } C_ ran x /\ ran x C_ dom x ) -> { z | ( F ` K ) x z } C_ dom x ) |
|
| 24 | 22 23 | mpan | |- ( ran x C_ dom x -> { z | ( F ` K ) x z } C_ dom x ) |
| 25 | vex | |- x e. _V |
|
| 26 | 25 | dmex | |- dom x e. _V |
| 27 | 26 | elpw2 | |- ( { z | ( F ` K ) x z } e. ~P dom x <-> { z | ( F ` K ) x z } C_ dom x ) |
| 28 | 24 27 | sylibr | |- ( ran x C_ dom x -> { z | ( F ` K ) x z } e. ~P dom x ) |
| 29 | 18 28 | syl11 | |- ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) -> ( ran x C_ dom x -> ( E. z ( F ` K ) x z -> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) ) |
| 30 | 29 | 3imp | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` K ) x z ) -> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) |
| 31 | fvex | |- ( g ` { z | ( F ` K ) x z } ) e. _V |
|
| 32 | nfcv | |- F/_ y s |
|
| 33 | nfcv | |- F/_ y K |
|
| 34 | nfcv | |- F/_ y ( g ` { z | ( F ` K ) x z } ) |
|
| 35 | breq1 | |- ( y = ( F ` K ) -> ( y x z <-> ( F ` K ) x z ) ) |
|
| 36 | 35 | abbidv | |- ( y = ( F ` K ) -> { z | y x z } = { z | ( F ` K ) x z } ) |
| 37 | 36 | fveq2d | |- ( y = ( F ` K ) -> ( g ` { z | y x z } ) = ( g ` { z | ( F ` K ) x z } ) ) |
| 38 | 32 33 34 1 37 | frsucmpt | |- ( ( K e. _om /\ ( g ` { z | ( F ` K ) x z } ) e. _V ) -> ( F ` suc K ) = ( g ` { z | ( F ` K ) x z } ) ) |
| 39 | 31 38 | mpan2 | |- ( K e. _om -> ( F ` suc K ) = ( g ` { z | ( F ` K ) x z } ) ) |
| 40 | 39 | breq2d | |- ( K e. _om -> ( ( F ` K ) x ( F ` suc K ) <-> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) |
| 41 | 30 40 | syl5ibrcom | |- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` K ) x z ) -> ( K e. _om -> ( F ` K ) x ( F ` suc K ) ) ) |