This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc . Using the full Axiom of Choice, we can construct a choice function g on ~P dom x . From this, we can build a sequence F starting at any value s e. dom x by repeatedly applying g to the set ( Fx ) (where x is the value from the previous iteration). (Contributed by Mario Carneiro, 25-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | axdclem2.1 | ⊢ 𝐹 = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) | |
| Assertion | axdclem2 | ⊢ ( ∃ 𝑧 𝑠 𝑥 𝑧 → ( ran 𝑥 ⊆ dom 𝑥 → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdclem2.1 | ⊢ 𝐹 = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) | |
| 2 | frfnom | ⊢ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) Fn ω | |
| 3 | 1 | fneq1i | ⊢ ( 𝐹 Fn ω ↔ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) Fn ω ) |
| 4 | 2 3 | mpbir | ⊢ 𝐹 Fn ω |
| 5 | 4 | a1i | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → 𝐹 Fn ω ) |
| 6 | omex | ⊢ ω ∈ V | |
| 7 | 6 | a1i | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ω ∈ V ) |
| 8 | 5 7 | fnexd | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → 𝐹 ∈ V ) |
| 9 | fveq2 | ⊢ ( 𝑛 = ∅ → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ∅ ) ) | |
| 10 | suceq | ⊢ ( 𝑛 = ∅ → suc 𝑛 = suc ∅ ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑛 = ∅ → ( 𝐹 ‘ suc 𝑛 ) = ( 𝐹 ‘ suc ∅ ) ) |
| 12 | 9 11 | breq12d | ⊢ ( 𝑛 = ∅ → ( ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ↔ ( 𝐹 ‘ ∅ ) 𝑥 ( 𝐹 ‘ suc ∅ ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 14 | suceq | ⊢ ( 𝑛 = 𝑘 → suc 𝑛 = suc 𝑘 ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ suc 𝑛 ) = ( 𝐹 ‘ suc 𝑘 ) ) |
| 16 | 13 15 | breq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ↔ ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑛 = suc 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ suc 𝑘 ) ) | |
| 18 | suceq | ⊢ ( 𝑛 = suc 𝑘 → suc 𝑛 = suc suc 𝑘 ) | |
| 19 | 18 | fveq2d | ⊢ ( 𝑛 = suc 𝑘 → ( 𝐹 ‘ suc 𝑛 ) = ( 𝐹 ‘ suc suc 𝑘 ) ) |
| 20 | 17 19 | breq12d | ⊢ ( 𝑛 = suc 𝑘 → ( ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ↔ ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) |
| 21 | 1 | fveq1i | ⊢ ( 𝐹 ‘ ∅ ) = ( ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) ‘ ∅ ) |
| 22 | fr0g | ⊢ ( 𝑠 ∈ V → ( ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) ‘ ∅ ) = 𝑠 ) | |
| 23 | 22 | elv | ⊢ ( ( rec ( ( 𝑦 ∈ V ↦ ( 𝑔 ‘ { 𝑧 ∣ 𝑦 𝑥 𝑧 } ) ) , 𝑠 ) ↾ ω ) ‘ ∅ ) = 𝑠 |
| 24 | 21 23 | eqtri | ⊢ ( 𝐹 ‘ ∅ ) = 𝑠 |
| 25 | 24 | breq1i | ⊢ ( ( 𝐹 ‘ ∅ ) 𝑥 𝑧 ↔ 𝑠 𝑥 𝑧 ) |
| 26 | 25 | biimpri | ⊢ ( 𝑠 𝑥 𝑧 → ( 𝐹 ‘ ∅ ) 𝑥 𝑧 ) |
| 27 | 26 | eximi | ⊢ ( ∃ 𝑧 𝑠 𝑥 𝑧 → ∃ 𝑧 ( 𝐹 ‘ ∅ ) 𝑥 𝑧 ) |
| 28 | peano1 | ⊢ ∅ ∈ ω | |
| 29 | 1 | axdclem | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 ( 𝐹 ‘ ∅ ) 𝑥 𝑧 ) → ( ∅ ∈ ω → ( 𝐹 ‘ ∅ ) 𝑥 ( 𝐹 ‘ suc ∅ ) ) ) |
| 30 | 28 29 | mpi | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 ( 𝐹 ‘ ∅ ) 𝑥 𝑧 ) → ( 𝐹 ‘ ∅ ) 𝑥 ( 𝐹 ‘ suc ∅ ) ) |
| 31 | 27 30 | syl3an3 | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ) → ( 𝐹 ‘ ∅ ) 𝑥 ( 𝐹 ‘ suc ∅ ) ) |
| 32 | 31 | 3com23 | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( 𝐹 ‘ ∅ ) 𝑥 ( 𝐹 ‘ suc ∅ ) ) |
| 33 | fvex | ⊢ ( 𝐹 ‘ 𝑘 ) ∈ V | |
| 34 | fvex | ⊢ ( 𝐹 ‘ suc 𝑘 ) ∈ V | |
| 35 | 33 34 | brelrn | ⊢ ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ( 𝐹 ‘ suc 𝑘 ) ∈ ran 𝑥 ) |
| 36 | ssel | ⊢ ( ran 𝑥 ⊆ dom 𝑥 → ( ( 𝐹 ‘ suc 𝑘 ) ∈ ran 𝑥 → ( 𝐹 ‘ suc 𝑘 ) ∈ dom 𝑥 ) ) | |
| 37 | 35 36 | syl5 | ⊢ ( ran 𝑥 ⊆ dom 𝑥 → ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ( 𝐹 ‘ suc 𝑘 ) ∈ dom 𝑥 ) ) |
| 38 | 34 | eldm | ⊢ ( ( 𝐹 ‘ suc 𝑘 ) ∈ dom 𝑥 ↔ ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 ) |
| 39 | 37 38 | imbitrdi | ⊢ ( ran 𝑥 ⊆ dom 𝑥 → ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 ) ) |
| 40 | 39 | ad2antll | ⊢ ( ( 𝑘 ∈ ω ∧ ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 ) ) |
| 41 | peano2 | ⊢ ( 𝑘 ∈ ω → suc 𝑘 ∈ ω ) | |
| 42 | 1 | axdclem | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 ) → ( suc 𝑘 ∈ ω → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) |
| 43 | 41 42 | syl5 | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 ) → ( 𝑘 ∈ ω → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) |
| 44 | 43 | 3expia | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 → ( 𝑘 ∈ ω → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) ) |
| 45 | 44 | com3r | ⊢ ( 𝑘 ∈ ω → ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) ) |
| 46 | 45 | imp | ⊢ ( ( 𝑘 ∈ ω ∧ ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ) ) → ( ∃ 𝑧 ( 𝐹 ‘ suc 𝑘 ) 𝑥 𝑧 → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) |
| 47 | 40 46 | syld | ⊢ ( ( 𝑘 ∈ ω ∧ ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ran 𝑥 ⊆ dom 𝑥 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) |
| 48 | 47 | 3adantr2 | ⊢ ( ( 𝑘 ∈ ω ∧ ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) |
| 49 | 48 | ex | ⊢ ( 𝑘 ∈ ω → ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( ( 𝐹 ‘ 𝑘 ) 𝑥 ( 𝐹 ‘ suc 𝑘 ) → ( 𝐹 ‘ suc 𝑘 ) 𝑥 ( 𝐹 ‘ suc suc 𝑘 ) ) ) ) |
| 50 | 12 16 20 32 49 | finds2 | ⊢ ( 𝑛 ∈ ω → ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ) ) |
| 51 | 50 | com12 | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ( 𝑛 ∈ ω → ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ) ) |
| 52 | 51 | ralrimiv | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ∀ 𝑛 ∈ ω ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ) |
| 53 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 54 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ suc 𝑛 ) = ( 𝐹 ‘ suc 𝑛 ) ) | |
| 55 | 53 54 | breq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ↔ ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ) ) |
| 56 | 55 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ↔ ∀ 𝑛 ∈ ω ( 𝐹 ‘ 𝑛 ) 𝑥 ( 𝐹 ‘ suc 𝑛 ) ) ) |
| 57 | 8 52 56 | spcedv | ⊢ ( ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ∃ 𝑧 𝑠 𝑥 𝑧 ∧ ran 𝑥 ⊆ dom 𝑥 ) → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) |
| 58 | 57 | 3exp | ⊢ ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) → ( ∃ 𝑧 𝑠 𝑥 𝑧 → ( ran 𝑥 ⊆ dom 𝑥 → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ) ) |
| 59 | vex | ⊢ 𝑥 ∈ V | |
| 60 | 59 | dmex | ⊢ dom 𝑥 ∈ V |
| 61 | 60 | pwex | ⊢ 𝒫 dom 𝑥 ∈ V |
| 62 | 61 | ac4c | ⊢ ∃ 𝑔 ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) |
| 63 | 58 62 | exlimiiv | ⊢ ( ∃ 𝑧 𝑠 𝑥 𝑧 → ( ran 𝑥 ⊆ dom 𝑥 → ∃ 𝑓 ∀ 𝑛 ∈ ω ( 𝑓 ‘ 𝑛 ) 𝑥 ( 𝑓 ‘ suc 𝑛 ) ) ) |