This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc2 . We construct a relation R based on F such that x R y iff y e. ( Fx ) , and show that the "function" described by ax-dc can be restricted so that it is a real function (since the stated properties only show that it is the superset of a function). (Contributed by Mario Carneiro, 25-Jan-2013) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc2lem.1 | ⊢ 𝐴 ∈ V | |
| axdc2lem.2 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } | ||
| axdc2lem.3 | ⊢ 𝐺 = ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) | ||
| Assertion | axdc2lem | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc2lem.1 | ⊢ 𝐴 ∈ V | |
| 2 | axdc2lem.2 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } | |
| 3 | axdc2lem.3 | ⊢ 𝐺 = ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) | |
| 4 | 2 | dmeqi | ⊢ dom 𝑅 = dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
| 5 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 6 | 5 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
| 7 | dmopab | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } | |
| 8 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } | |
| 9 | 6 7 8 | 3eqtr4i | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) } |
| 10 | 4 9 | eqtri | ⊢ dom 𝑅 = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) } |
| 11 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) | |
| 12 | eldifsni | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) | |
| 13 | n0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) | |
| 14 | 12 13 | sylib | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 15 | 11 14 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 16 | 15 | ralrimiva | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 17 | rabid2 | ⊢ ( 𝐴 = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) } ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) | |
| 18 | 16 17 | sylibr | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝐴 = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) } ) |
| 19 | 10 18 | eqtr4id | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → dom 𝑅 = 𝐴 ) |
| 20 | 19 | neeq1d | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( dom 𝑅 ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) |
| 21 | 20 | biimparc | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → dom 𝑅 ≠ ∅ ) |
| 22 | 2 | rneqi | ⊢ ran 𝑅 = ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
| 23 | rnopab | ⊢ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } | |
| 24 | 22 23 | eqtri | ⊢ ran 𝑅 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
| 25 | eldifi | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝒫 𝐴 ) | |
| 26 | elelpwi | ⊢ ( ( 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝒫 𝐴 ) → 𝑦 ∈ 𝐴 ) | |
| 27 | 26 | expcom | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝒫 𝐴 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐴 ) ) |
| 28 | 11 25 27 | 3syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐴 ) ) |
| 29 | 28 | expimpd | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) ) |
| 30 | 29 | exlimdv | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) ) |
| 31 | 30 | abssdv | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } ⊆ 𝐴 ) |
| 32 | 24 31 | eqsstrid | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ran 𝑅 ⊆ 𝐴 ) |
| 33 | 32 19 | sseqtrrd | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ran 𝑅 ⊆ dom 𝑅 ) |
| 34 | 33 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ran 𝑅 ⊆ dom 𝑅 ) |
| 35 | fvrn0 | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ ( ran 𝐹 ∪ { ∅ } ) | |
| 36 | elssuni | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ran 𝐹 ∪ { ∅ } ) → ( 𝐹 ‘ 𝑥 ) ⊆ ∪ ( ran 𝐹 ∪ { ∅ } ) ) | |
| 37 | 35 36 | ax-mp | ⊢ ( 𝐹 ‘ 𝑥 ) ⊆ ∪ ( ran 𝐹 ∪ { ∅ } ) |
| 38 | 37 | sseli | ⊢ ( 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ ∪ ( ran 𝐹 ∪ { ∅ } ) ) |
| 39 | 38 | anim2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ ( ran 𝐹 ∪ { ∅ } ) ) ) |
| 40 | 39 | ssopab2i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ ( ran 𝐹 ∪ { ∅ } ) ) } |
| 41 | df-xp | ⊢ ( 𝐴 × ∪ ( ran 𝐹 ∪ { ∅ } ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∪ ( ran 𝐹 ∪ { ∅ } ) ) } | |
| 42 | 40 2 41 | 3sstr4i | ⊢ 𝑅 ⊆ ( 𝐴 × ∪ ( ran 𝐹 ∪ { ∅ } ) ) |
| 43 | frn | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ran 𝐹 ⊆ ( 𝒫 𝐴 ∖ { ∅ } ) ) | |
| 44 | 43 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ran 𝐹 ⊆ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 45 | 1 | pwex | ⊢ 𝒫 𝐴 ∈ V |
| 46 | 45 | difexi | ⊢ ( 𝒫 𝐴 ∖ { ∅ } ) ∈ V |
| 47 | 46 | ssex | ⊢ ( ran 𝐹 ⊆ ( 𝒫 𝐴 ∖ { ∅ } ) → ran 𝐹 ∈ V ) |
| 48 | 44 47 | syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ran 𝐹 ∈ V ) |
| 49 | p0ex | ⊢ { ∅ } ∈ V | |
| 50 | unexg | ⊢ ( ( ran 𝐹 ∈ V ∧ { ∅ } ∈ V ) → ( ran 𝐹 ∪ { ∅ } ) ∈ V ) | |
| 51 | 48 49 50 | sylancl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ran 𝐹 ∪ { ∅ } ) ∈ V ) |
| 52 | 51 | uniexd | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∪ ( ran 𝐹 ∪ { ∅ } ) ∈ V ) |
| 53 | xpexg | ⊢ ( ( 𝐴 ∈ V ∧ ∪ ( ran 𝐹 ∪ { ∅ } ) ∈ V ) → ( 𝐴 × ∪ ( ran 𝐹 ∪ { ∅ } ) ) ∈ V ) | |
| 54 | 1 52 53 | sylancr | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( 𝐴 × ∪ ( ran 𝐹 ∪ { ∅ } ) ) ∈ V ) |
| 55 | ssexg | ⊢ ( ( 𝑅 ⊆ ( 𝐴 × ∪ ( ran 𝐹 ∪ { ∅ } ) ) ∧ ( 𝐴 × ∪ ( ran 𝐹 ∪ { ∅ } ) ) ∈ V ) → 𝑅 ∈ V ) | |
| 56 | 42 54 55 | sylancr | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → 𝑅 ∈ V ) |
| 57 | n0 | ⊢ ( dom 𝑟 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ dom 𝑟 ) | |
| 58 | vex | ⊢ 𝑥 ∈ V | |
| 59 | 58 | eldm | ⊢ ( 𝑥 ∈ dom 𝑟 ↔ ∃ 𝑦 𝑥 𝑟 𝑦 ) |
| 60 | 59 | exbii | ⊢ ( ∃ 𝑥 𝑥 ∈ dom 𝑟 ↔ ∃ 𝑥 ∃ 𝑦 𝑥 𝑟 𝑦 ) |
| 61 | 57 60 | bitr2i | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝑥 𝑟 𝑦 ↔ dom 𝑟 ≠ ∅ ) |
| 62 | dmeq | ⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) | |
| 63 | 62 | neeq1d | ⊢ ( 𝑟 = 𝑅 → ( dom 𝑟 ≠ ∅ ↔ dom 𝑅 ≠ ∅ ) ) |
| 64 | 61 63 | bitrid | ⊢ ( 𝑟 = 𝑅 → ( ∃ 𝑥 ∃ 𝑦 𝑥 𝑟 𝑦 ↔ dom 𝑅 ≠ ∅ ) ) |
| 65 | rneq | ⊢ ( 𝑟 = 𝑅 → ran 𝑟 = ran 𝑅 ) | |
| 66 | 65 62 | sseq12d | ⊢ ( 𝑟 = 𝑅 → ( ran 𝑟 ⊆ dom 𝑟 ↔ ran 𝑅 ⊆ dom 𝑅 ) ) |
| 67 | 64 66 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ∃ 𝑥 ∃ 𝑦 𝑥 𝑟 𝑦 ∧ ran 𝑟 ⊆ dom 𝑟 ) ↔ ( dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅 ) ) ) |
| 68 | breq | ⊢ ( 𝑟 = 𝑅 → ( ( ℎ ‘ 𝑘 ) 𝑟 ( ℎ ‘ suc 𝑘 ) ↔ ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) | |
| 69 | 68 | ralbidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑟 ( ℎ ‘ suc 𝑘 ) ↔ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) |
| 70 | 69 | exbidv | ⊢ ( 𝑟 = 𝑅 → ( ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑟 ( ℎ ‘ suc 𝑘 ) ↔ ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) |
| 71 | 67 70 | imbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( ∃ 𝑥 ∃ 𝑦 𝑥 𝑟 𝑦 ∧ ran 𝑟 ⊆ dom 𝑟 ) → ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑟 ( ℎ ‘ suc 𝑘 ) ) ↔ ( ( dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅 ) → ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) ) |
| 72 | ax-dc | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝑥 𝑟 𝑦 ∧ ran 𝑟 ⊆ dom 𝑟 ) → ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑟 ( ℎ ‘ suc 𝑘 ) ) | |
| 73 | 71 72 | vtoclg | ⊢ ( 𝑅 ∈ V → ( ( dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅 ) → ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) |
| 74 | 56 73 | syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ( ( dom 𝑅 ≠ ∅ ∧ ran 𝑅 ⊆ dom 𝑅 ) → ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) |
| 75 | 21 34 74 | mp2and | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) |
| 76 | simpr | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) | |
| 77 | fveq2 | ⊢ ( 𝑘 = 𝑥 → ( ℎ ‘ 𝑘 ) = ( ℎ ‘ 𝑥 ) ) | |
| 78 | suceq | ⊢ ( 𝑘 = 𝑥 → suc 𝑘 = suc 𝑥 ) | |
| 79 | 78 | fveq2d | ⊢ ( 𝑘 = 𝑥 → ( ℎ ‘ suc 𝑘 ) = ( ℎ ‘ suc 𝑥 ) ) |
| 80 | 77 79 | breq12d | ⊢ ( 𝑘 = 𝑥 → ( ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ↔ ( ℎ ‘ 𝑥 ) 𝑅 ( ℎ ‘ suc 𝑥 ) ) ) |
| 81 | 80 | rspccv | ⊢ ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → ( 𝑥 ∈ ω → ( ℎ ‘ 𝑥 ) 𝑅 ( ℎ ‘ suc 𝑥 ) ) ) |
| 82 | fvex | ⊢ ( ℎ ‘ 𝑥 ) ∈ V | |
| 83 | fvex | ⊢ ( ℎ ‘ suc 𝑥 ) ∈ V | |
| 84 | 82 83 | breldm | ⊢ ( ( ℎ ‘ 𝑥 ) 𝑅 ( ℎ ‘ suc 𝑥 ) → ( ℎ ‘ 𝑥 ) ∈ dom 𝑅 ) |
| 85 | 81 84 | syl6 | ⊢ ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → ( 𝑥 ∈ ω → ( ℎ ‘ 𝑥 ) ∈ dom 𝑅 ) ) |
| 86 | 85 | imp | ⊢ ( ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ∧ 𝑥 ∈ ω ) → ( ℎ ‘ 𝑥 ) ∈ dom 𝑅 ) |
| 87 | 86 | adantll | ⊢ ( ( ( dom 𝑅 = 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ∧ 𝑥 ∈ ω ) → ( ℎ ‘ 𝑥 ) ∈ dom 𝑅 ) |
| 88 | eleq2 | ⊢ ( dom 𝑅 = 𝐴 → ( ( ℎ ‘ 𝑥 ) ∈ dom 𝑅 ↔ ( ℎ ‘ 𝑥 ) ∈ 𝐴 ) ) | |
| 89 | 88 | ad2antrr | ⊢ ( ( ( dom 𝑅 = 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ∧ 𝑥 ∈ ω ) → ( ( ℎ ‘ 𝑥 ) ∈ dom 𝑅 ↔ ( ℎ ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 90 | 87 89 | mpbid | ⊢ ( ( ( dom 𝑅 = 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ∧ 𝑥 ∈ ω ) → ( ℎ ‘ 𝑥 ) ∈ 𝐴 ) |
| 91 | 90 3 | fmptd | ⊢ ( ( dom 𝑅 = 𝐴 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) → 𝐺 : ω ⟶ 𝐴 ) |
| 92 | 91 | ex | ⊢ ( dom 𝑅 = 𝐴 → ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → 𝐺 : ω ⟶ 𝐴 ) ) |
| 93 | 19 92 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → 𝐺 : ω ⟶ 𝐴 ) ) |
| 94 | 93 | impcom | ⊢ ( ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → 𝐺 : ω ⟶ 𝐴 ) |
| 95 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ 𝑘 ) ) | |
| 96 | fvex | ⊢ ( ℎ ‘ 𝑘 ) ∈ V | |
| 97 | 95 3 96 | fvmpt | ⊢ ( 𝑘 ∈ ω → ( 𝐺 ‘ 𝑘 ) = ( ℎ ‘ 𝑘 ) ) |
| 98 | peano2 | ⊢ ( 𝑘 ∈ ω → suc 𝑘 ∈ ω ) | |
| 99 | fvex | ⊢ ( ℎ ‘ suc 𝑘 ) ∈ V | |
| 100 | fveq2 | ⊢ ( 𝑥 = suc 𝑘 → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ suc 𝑘 ) ) | |
| 101 | 100 3 | fvmptg | ⊢ ( ( suc 𝑘 ∈ ω ∧ ( ℎ ‘ suc 𝑘 ) ∈ V ) → ( 𝐺 ‘ suc 𝑘 ) = ( ℎ ‘ suc 𝑘 ) ) |
| 102 | 98 99 101 | sylancl | ⊢ ( 𝑘 ∈ ω → ( 𝐺 ‘ suc 𝑘 ) = ( ℎ ‘ suc 𝑘 ) ) |
| 103 | 97 102 | breq12d | ⊢ ( 𝑘 ∈ ω → ( ( 𝐺 ‘ 𝑘 ) 𝑅 ( 𝐺 ‘ suc 𝑘 ) ↔ ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ) ) |
| 104 | fvex | ⊢ ( 𝐺 ‘ 𝑘 ) ∈ V | |
| 105 | fvex | ⊢ ( 𝐺 ‘ suc 𝑘 ) ∈ V | |
| 106 | eleq1 | ⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( 𝑥 ∈ 𝐴 ↔ ( 𝐺 ‘ 𝑘 ) ∈ 𝐴 ) ) | |
| 107 | fveq2 | ⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 108 | 107 | eleq2d | ⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 109 | 106 108 | anbi12d | ⊢ ( 𝑥 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 110 | eleq1 | ⊢ ( 𝑦 = ( 𝐺 ‘ suc 𝑘 ) → ( 𝑦 ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) | |
| 111 | 110 | anbi2d | ⊢ ( 𝑦 = ( 𝐺 ‘ suc 𝑘 ) → ( ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ↔ ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐴 ∧ ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 112 | 104 105 109 111 2 | brab | ⊢ ( ( 𝐺 ‘ 𝑘 ) 𝑅 ( 𝐺 ‘ suc 𝑘 ) ↔ ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐴 ∧ ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 113 | 112 | simprbi | ⊢ ( ( 𝐺 ‘ 𝑘 ) 𝑅 ( 𝐺 ‘ suc 𝑘 ) → ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 114 | 103 113 | biimtrrdi | ⊢ ( 𝑘 ∈ ω → ( ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 115 | 114 | ralimia | ⊢ ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → ∀ 𝑘 ∈ ω ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 116 | 115 | adantr | ⊢ ( ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∀ 𝑘 ∈ ω ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 117 | fvrn0 | ⊢ ( ℎ ‘ 𝑥 ) ∈ ( ran ℎ ∪ { ∅ } ) | |
| 118 | 117 | rgenw | ⊢ ∀ 𝑥 ∈ ω ( ℎ ‘ 𝑥 ) ∈ ( ran ℎ ∪ { ∅ } ) |
| 119 | eqid | ⊢ ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) = ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) | |
| 120 | 119 | fmpt | ⊢ ( ∀ 𝑥 ∈ ω ( ℎ ‘ 𝑥 ) ∈ ( ran ℎ ∪ { ∅ } ) ↔ ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) : ω ⟶ ( ran ℎ ∪ { ∅ } ) ) |
| 121 | 118 120 | mpbi | ⊢ ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) : ω ⟶ ( ran ℎ ∪ { ∅ } ) |
| 122 | dcomex | ⊢ ω ∈ V | |
| 123 | vex | ⊢ ℎ ∈ V | |
| 124 | 123 | rnex | ⊢ ran ℎ ∈ V |
| 125 | 124 49 | unex | ⊢ ( ran ℎ ∪ { ∅ } ) ∈ V |
| 126 | fex2 | ⊢ ( ( ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) : ω ⟶ ( ran ℎ ∪ { ∅ } ) ∧ ω ∈ V ∧ ( ran ℎ ∪ { ∅ } ) ∈ V ) → ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) ∈ V ) | |
| 127 | 121 122 125 126 | mp3an | ⊢ ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) ∈ V |
| 128 | 3 127 | eqeltri | ⊢ 𝐺 ∈ V |
| 129 | feq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 : ω ⟶ 𝐴 ↔ 𝐺 : ω ⟶ 𝐴 ) ) | |
| 130 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ suc 𝑘 ) = ( 𝐺 ‘ suc 𝑘 ) ) | |
| 131 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 132 | 131 | fveq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 133 | 130 132 | eleq12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 134 | 133 | ralbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ ω ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 135 | 129 134 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ↔ ( 𝐺 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 136 | 128 135 | spcev | ⊢ ( ( 𝐺 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝐺 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 137 | 94 116 136 | syl2anc | ⊢ ( ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 138 | 137 | ex | ⊢ ( ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 139 | 138 | exlimiv | ⊢ ( ∃ ℎ ∀ 𝑘 ∈ ω ( ℎ ‘ 𝑘 ) 𝑅 ( ℎ ‘ suc 𝑘 ) → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 140 | 75 76 139 | sylc | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |