This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc2 . We construct a relation R based on F such that x R y iff y e. ( Fx ) , and show that the "function" described by ax-dc can be restricted so that it is a real function (since the stated properties only show that it is the superset of a function). (Contributed by Mario Carneiro, 25-Jan-2013) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc2lem.1 | |- A e. _V |
|
| axdc2lem.2 | |- R = { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |
||
| axdc2lem.3 | |- G = ( x e. _om |-> ( h ` x ) ) |
||
| Assertion | axdc2lem | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc2lem.1 | |- A e. _V |
|
| 2 | axdc2lem.2 | |- R = { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |
|
| 3 | axdc2lem.3 | |- G = ( x e. _om |-> ( h ` x ) ) |
|
| 4 | 2 | dmeqi | |- dom R = dom { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |
| 5 | 19.42v | |- ( E. y ( x e. A /\ y e. ( F ` x ) ) <-> ( x e. A /\ E. y y e. ( F ` x ) ) ) |
|
| 6 | 5 | abbii | |- { x | E. y ( x e. A /\ y e. ( F ` x ) ) } = { x | ( x e. A /\ E. y y e. ( F ` x ) ) } |
| 7 | dmopab | |- dom { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } = { x | E. y ( x e. A /\ y e. ( F ` x ) ) } |
|
| 8 | df-rab | |- { x e. A | E. y y e. ( F ` x ) } = { x | ( x e. A /\ E. y y e. ( F ` x ) ) } |
|
| 9 | 6 7 8 | 3eqtr4i | |- dom { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } = { x e. A | E. y y e. ( F ` x ) } |
| 10 | 4 9 | eqtri | |- dom R = { x e. A | E. y y e. ( F ` x ) } |
| 11 | ffvelcdm | |- ( ( F : A --> ( ~P A \ { (/) } ) /\ x e. A ) -> ( F ` x ) e. ( ~P A \ { (/) } ) ) |
|
| 12 | eldifsni | |- ( ( F ` x ) e. ( ~P A \ { (/) } ) -> ( F ` x ) =/= (/) ) |
|
| 13 | n0 | |- ( ( F ` x ) =/= (/) <-> E. y y e. ( F ` x ) ) |
|
| 14 | 12 13 | sylib | |- ( ( F ` x ) e. ( ~P A \ { (/) } ) -> E. y y e. ( F ` x ) ) |
| 15 | 11 14 | syl | |- ( ( F : A --> ( ~P A \ { (/) } ) /\ x e. A ) -> E. y y e. ( F ` x ) ) |
| 16 | 15 | ralrimiva | |- ( F : A --> ( ~P A \ { (/) } ) -> A. x e. A E. y y e. ( F ` x ) ) |
| 17 | rabid2 | |- ( A = { x e. A | E. y y e. ( F ` x ) } <-> A. x e. A E. y y e. ( F ` x ) ) |
|
| 18 | 16 17 | sylibr | |- ( F : A --> ( ~P A \ { (/) } ) -> A = { x e. A | E. y y e. ( F ` x ) } ) |
| 19 | 10 18 | eqtr4id | |- ( F : A --> ( ~P A \ { (/) } ) -> dom R = A ) |
| 20 | 19 | neeq1d | |- ( F : A --> ( ~P A \ { (/) } ) -> ( dom R =/= (/) <-> A =/= (/) ) ) |
| 21 | 20 | biimparc | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> dom R =/= (/) ) |
| 22 | 2 | rneqi | |- ran R = ran { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |
| 23 | rnopab | |- ran { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } = { y | E. x ( x e. A /\ y e. ( F ` x ) ) } |
|
| 24 | 22 23 | eqtri | |- ran R = { y | E. x ( x e. A /\ y e. ( F ` x ) ) } |
| 25 | eldifi | |- ( ( F ` x ) e. ( ~P A \ { (/) } ) -> ( F ` x ) e. ~P A ) |
|
| 26 | elelpwi | |- ( ( y e. ( F ` x ) /\ ( F ` x ) e. ~P A ) -> y e. A ) |
|
| 27 | 26 | expcom | |- ( ( F ` x ) e. ~P A -> ( y e. ( F ` x ) -> y e. A ) ) |
| 28 | 11 25 27 | 3syl | |- ( ( F : A --> ( ~P A \ { (/) } ) /\ x e. A ) -> ( y e. ( F ` x ) -> y e. A ) ) |
| 29 | 28 | expimpd | |- ( F : A --> ( ~P A \ { (/) } ) -> ( ( x e. A /\ y e. ( F ` x ) ) -> y e. A ) ) |
| 30 | 29 | exlimdv | |- ( F : A --> ( ~P A \ { (/) } ) -> ( E. x ( x e. A /\ y e. ( F ` x ) ) -> y e. A ) ) |
| 31 | 30 | abssdv | |- ( F : A --> ( ~P A \ { (/) } ) -> { y | E. x ( x e. A /\ y e. ( F ` x ) ) } C_ A ) |
| 32 | 24 31 | eqsstrid | |- ( F : A --> ( ~P A \ { (/) } ) -> ran R C_ A ) |
| 33 | 32 19 | sseqtrrd | |- ( F : A --> ( ~P A \ { (/) } ) -> ran R C_ dom R ) |
| 34 | 33 | adantl | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> ran R C_ dom R ) |
| 35 | fvrn0 | |- ( F ` x ) e. ( ran F u. { (/) } ) |
|
| 36 | elssuni | |- ( ( F ` x ) e. ( ran F u. { (/) } ) -> ( F ` x ) C_ U. ( ran F u. { (/) } ) ) |
|
| 37 | 35 36 | ax-mp | |- ( F ` x ) C_ U. ( ran F u. { (/) } ) |
| 38 | 37 | sseli | |- ( y e. ( F ` x ) -> y e. U. ( ran F u. { (/) } ) ) |
| 39 | 38 | anim2i | |- ( ( x e. A /\ y e. ( F ` x ) ) -> ( x e. A /\ y e. U. ( ran F u. { (/) } ) ) ) |
| 40 | 39 | ssopab2i | |- { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } C_ { <. x , y >. | ( x e. A /\ y e. U. ( ran F u. { (/) } ) ) } |
| 41 | df-xp | |- ( A X. U. ( ran F u. { (/) } ) ) = { <. x , y >. | ( x e. A /\ y e. U. ( ran F u. { (/) } ) ) } |
|
| 42 | 40 2 41 | 3sstr4i | |- R C_ ( A X. U. ( ran F u. { (/) } ) ) |
| 43 | frn | |- ( F : A --> ( ~P A \ { (/) } ) -> ran F C_ ( ~P A \ { (/) } ) ) |
|
| 44 | 43 | adantl | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> ran F C_ ( ~P A \ { (/) } ) ) |
| 45 | 1 | pwex | |- ~P A e. _V |
| 46 | 45 | difexi | |- ( ~P A \ { (/) } ) e. _V |
| 47 | 46 | ssex | |- ( ran F C_ ( ~P A \ { (/) } ) -> ran F e. _V ) |
| 48 | 44 47 | syl | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> ran F e. _V ) |
| 49 | p0ex | |- { (/) } e. _V |
|
| 50 | unexg | |- ( ( ran F e. _V /\ { (/) } e. _V ) -> ( ran F u. { (/) } ) e. _V ) |
|
| 51 | 48 49 50 | sylancl | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> ( ran F u. { (/) } ) e. _V ) |
| 52 | 51 | uniexd | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> U. ( ran F u. { (/) } ) e. _V ) |
| 53 | xpexg | |- ( ( A e. _V /\ U. ( ran F u. { (/) } ) e. _V ) -> ( A X. U. ( ran F u. { (/) } ) ) e. _V ) |
|
| 54 | 1 52 53 | sylancr | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> ( A X. U. ( ran F u. { (/) } ) ) e. _V ) |
| 55 | ssexg | |- ( ( R C_ ( A X. U. ( ran F u. { (/) } ) ) /\ ( A X. U. ( ran F u. { (/) } ) ) e. _V ) -> R e. _V ) |
|
| 56 | 42 54 55 | sylancr | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> R e. _V ) |
| 57 | n0 | |- ( dom r =/= (/) <-> E. x x e. dom r ) |
|
| 58 | vex | |- x e. _V |
|
| 59 | 58 | eldm | |- ( x e. dom r <-> E. y x r y ) |
| 60 | 59 | exbii | |- ( E. x x e. dom r <-> E. x E. y x r y ) |
| 61 | 57 60 | bitr2i | |- ( E. x E. y x r y <-> dom r =/= (/) ) |
| 62 | dmeq | |- ( r = R -> dom r = dom R ) |
|
| 63 | 62 | neeq1d | |- ( r = R -> ( dom r =/= (/) <-> dom R =/= (/) ) ) |
| 64 | 61 63 | bitrid | |- ( r = R -> ( E. x E. y x r y <-> dom R =/= (/) ) ) |
| 65 | rneq | |- ( r = R -> ran r = ran R ) |
|
| 66 | 65 62 | sseq12d | |- ( r = R -> ( ran r C_ dom r <-> ran R C_ dom R ) ) |
| 67 | 64 66 | anbi12d | |- ( r = R -> ( ( E. x E. y x r y /\ ran r C_ dom r ) <-> ( dom R =/= (/) /\ ran R C_ dom R ) ) ) |
| 68 | breq | |- ( r = R -> ( ( h ` k ) r ( h ` suc k ) <-> ( h ` k ) R ( h ` suc k ) ) ) |
|
| 69 | 68 | ralbidv | |- ( r = R -> ( A. k e. _om ( h ` k ) r ( h ` suc k ) <-> A. k e. _om ( h ` k ) R ( h ` suc k ) ) ) |
| 70 | 69 | exbidv | |- ( r = R -> ( E. h A. k e. _om ( h ` k ) r ( h ` suc k ) <-> E. h A. k e. _om ( h ` k ) R ( h ` suc k ) ) ) |
| 71 | 67 70 | imbi12d | |- ( r = R -> ( ( ( E. x E. y x r y /\ ran r C_ dom r ) -> E. h A. k e. _om ( h ` k ) r ( h ` suc k ) ) <-> ( ( dom R =/= (/) /\ ran R C_ dom R ) -> E. h A. k e. _om ( h ` k ) R ( h ` suc k ) ) ) ) |
| 72 | ax-dc | |- ( ( E. x E. y x r y /\ ran r C_ dom r ) -> E. h A. k e. _om ( h ` k ) r ( h ` suc k ) ) |
|
| 73 | 71 72 | vtoclg | |- ( R e. _V -> ( ( dom R =/= (/) /\ ran R C_ dom R ) -> E. h A. k e. _om ( h ` k ) R ( h ` suc k ) ) ) |
| 74 | 56 73 | syl | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> ( ( dom R =/= (/) /\ ran R C_ dom R ) -> E. h A. k e. _om ( h ` k ) R ( h ` suc k ) ) ) |
| 75 | 21 34 74 | mp2and | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> E. h A. k e. _om ( h ` k ) R ( h ` suc k ) ) |
| 76 | simpr | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> F : A --> ( ~P A \ { (/) } ) ) |
|
| 77 | fveq2 | |- ( k = x -> ( h ` k ) = ( h ` x ) ) |
|
| 78 | suceq | |- ( k = x -> suc k = suc x ) |
|
| 79 | 78 | fveq2d | |- ( k = x -> ( h ` suc k ) = ( h ` suc x ) ) |
| 80 | 77 79 | breq12d | |- ( k = x -> ( ( h ` k ) R ( h ` suc k ) <-> ( h ` x ) R ( h ` suc x ) ) ) |
| 81 | 80 | rspccv | |- ( A. k e. _om ( h ` k ) R ( h ` suc k ) -> ( x e. _om -> ( h ` x ) R ( h ` suc x ) ) ) |
| 82 | fvex | |- ( h ` x ) e. _V |
|
| 83 | fvex | |- ( h ` suc x ) e. _V |
|
| 84 | 82 83 | breldm | |- ( ( h ` x ) R ( h ` suc x ) -> ( h ` x ) e. dom R ) |
| 85 | 81 84 | syl6 | |- ( A. k e. _om ( h ` k ) R ( h ` suc k ) -> ( x e. _om -> ( h ` x ) e. dom R ) ) |
| 86 | 85 | imp | |- ( ( A. k e. _om ( h ` k ) R ( h ` suc k ) /\ x e. _om ) -> ( h ` x ) e. dom R ) |
| 87 | 86 | adantll | |- ( ( ( dom R = A /\ A. k e. _om ( h ` k ) R ( h ` suc k ) ) /\ x e. _om ) -> ( h ` x ) e. dom R ) |
| 88 | eleq2 | |- ( dom R = A -> ( ( h ` x ) e. dom R <-> ( h ` x ) e. A ) ) |
|
| 89 | 88 | ad2antrr | |- ( ( ( dom R = A /\ A. k e. _om ( h ` k ) R ( h ` suc k ) ) /\ x e. _om ) -> ( ( h ` x ) e. dom R <-> ( h ` x ) e. A ) ) |
| 90 | 87 89 | mpbid | |- ( ( ( dom R = A /\ A. k e. _om ( h ` k ) R ( h ` suc k ) ) /\ x e. _om ) -> ( h ` x ) e. A ) |
| 91 | 90 3 | fmptd | |- ( ( dom R = A /\ A. k e. _om ( h ` k ) R ( h ` suc k ) ) -> G : _om --> A ) |
| 92 | 91 | ex | |- ( dom R = A -> ( A. k e. _om ( h ` k ) R ( h ` suc k ) -> G : _om --> A ) ) |
| 93 | 19 92 | syl | |- ( F : A --> ( ~P A \ { (/) } ) -> ( A. k e. _om ( h ` k ) R ( h ` suc k ) -> G : _om --> A ) ) |
| 94 | 93 | impcom | |- ( ( A. k e. _om ( h ` k ) R ( h ` suc k ) /\ F : A --> ( ~P A \ { (/) } ) ) -> G : _om --> A ) |
| 95 | fveq2 | |- ( x = k -> ( h ` x ) = ( h ` k ) ) |
|
| 96 | fvex | |- ( h ` k ) e. _V |
|
| 97 | 95 3 96 | fvmpt | |- ( k e. _om -> ( G ` k ) = ( h ` k ) ) |
| 98 | peano2 | |- ( k e. _om -> suc k e. _om ) |
|
| 99 | fvex | |- ( h ` suc k ) e. _V |
|
| 100 | fveq2 | |- ( x = suc k -> ( h ` x ) = ( h ` suc k ) ) |
|
| 101 | 100 3 | fvmptg | |- ( ( suc k e. _om /\ ( h ` suc k ) e. _V ) -> ( G ` suc k ) = ( h ` suc k ) ) |
| 102 | 98 99 101 | sylancl | |- ( k e. _om -> ( G ` suc k ) = ( h ` suc k ) ) |
| 103 | 97 102 | breq12d | |- ( k e. _om -> ( ( G ` k ) R ( G ` suc k ) <-> ( h ` k ) R ( h ` suc k ) ) ) |
| 104 | fvex | |- ( G ` k ) e. _V |
|
| 105 | fvex | |- ( G ` suc k ) e. _V |
|
| 106 | eleq1 | |- ( x = ( G ` k ) -> ( x e. A <-> ( G ` k ) e. A ) ) |
|
| 107 | fveq2 | |- ( x = ( G ` k ) -> ( F ` x ) = ( F ` ( G ` k ) ) ) |
|
| 108 | 107 | eleq2d | |- ( x = ( G ` k ) -> ( y e. ( F ` x ) <-> y e. ( F ` ( G ` k ) ) ) ) |
| 109 | 106 108 | anbi12d | |- ( x = ( G ` k ) -> ( ( x e. A /\ y e. ( F ` x ) ) <-> ( ( G ` k ) e. A /\ y e. ( F ` ( G ` k ) ) ) ) ) |
| 110 | eleq1 | |- ( y = ( G ` suc k ) -> ( y e. ( F ` ( G ` k ) ) <-> ( G ` suc k ) e. ( F ` ( G ` k ) ) ) ) |
|
| 111 | 110 | anbi2d | |- ( y = ( G ` suc k ) -> ( ( ( G ` k ) e. A /\ y e. ( F ` ( G ` k ) ) ) <-> ( ( G ` k ) e. A /\ ( G ` suc k ) e. ( F ` ( G ` k ) ) ) ) ) |
| 112 | 104 105 109 111 2 | brab | |- ( ( G ` k ) R ( G ` suc k ) <-> ( ( G ` k ) e. A /\ ( G ` suc k ) e. ( F ` ( G ` k ) ) ) ) |
| 113 | 112 | simprbi | |- ( ( G ` k ) R ( G ` suc k ) -> ( G ` suc k ) e. ( F ` ( G ` k ) ) ) |
| 114 | 103 113 | biimtrrdi | |- ( k e. _om -> ( ( h ` k ) R ( h ` suc k ) -> ( G ` suc k ) e. ( F ` ( G ` k ) ) ) ) |
| 115 | 114 | ralimia | |- ( A. k e. _om ( h ` k ) R ( h ` suc k ) -> A. k e. _om ( G ` suc k ) e. ( F ` ( G ` k ) ) ) |
| 116 | 115 | adantr | |- ( ( A. k e. _om ( h ` k ) R ( h ` suc k ) /\ F : A --> ( ~P A \ { (/) } ) ) -> A. k e. _om ( G ` suc k ) e. ( F ` ( G ` k ) ) ) |
| 117 | fvrn0 | |- ( h ` x ) e. ( ran h u. { (/) } ) |
|
| 118 | 117 | rgenw | |- A. x e. _om ( h ` x ) e. ( ran h u. { (/) } ) |
| 119 | eqid | |- ( x e. _om |-> ( h ` x ) ) = ( x e. _om |-> ( h ` x ) ) |
|
| 120 | 119 | fmpt | |- ( A. x e. _om ( h ` x ) e. ( ran h u. { (/) } ) <-> ( x e. _om |-> ( h ` x ) ) : _om --> ( ran h u. { (/) } ) ) |
| 121 | 118 120 | mpbi | |- ( x e. _om |-> ( h ` x ) ) : _om --> ( ran h u. { (/) } ) |
| 122 | dcomex | |- _om e. _V |
|
| 123 | vex | |- h e. _V |
|
| 124 | 123 | rnex | |- ran h e. _V |
| 125 | 124 49 | unex | |- ( ran h u. { (/) } ) e. _V |
| 126 | fex2 | |- ( ( ( x e. _om |-> ( h ` x ) ) : _om --> ( ran h u. { (/) } ) /\ _om e. _V /\ ( ran h u. { (/) } ) e. _V ) -> ( x e. _om |-> ( h ` x ) ) e. _V ) |
|
| 127 | 121 122 125 126 | mp3an | |- ( x e. _om |-> ( h ` x ) ) e. _V |
| 128 | 3 127 | eqeltri | |- G e. _V |
| 129 | feq1 | |- ( g = G -> ( g : _om --> A <-> G : _om --> A ) ) |
|
| 130 | fveq1 | |- ( g = G -> ( g ` suc k ) = ( G ` suc k ) ) |
|
| 131 | fveq1 | |- ( g = G -> ( g ` k ) = ( G ` k ) ) |
|
| 132 | 131 | fveq2d | |- ( g = G -> ( F ` ( g ` k ) ) = ( F ` ( G ` k ) ) ) |
| 133 | 130 132 | eleq12d | |- ( g = G -> ( ( g ` suc k ) e. ( F ` ( g ` k ) ) <-> ( G ` suc k ) e. ( F ` ( G ` k ) ) ) ) |
| 134 | 133 | ralbidv | |- ( g = G -> ( A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) <-> A. k e. _om ( G ` suc k ) e. ( F ` ( G ` k ) ) ) ) |
| 135 | 129 134 | anbi12d | |- ( g = G -> ( ( g : _om --> A /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) <-> ( G : _om --> A /\ A. k e. _om ( G ` suc k ) e. ( F ` ( G ` k ) ) ) ) ) |
| 136 | 128 135 | spcev | |- ( ( G : _om --> A /\ A. k e. _om ( G ` suc k ) e. ( F ` ( G ` k ) ) ) -> E. g ( g : _om --> A /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |
| 137 | 94 116 136 | syl2anc | |- ( ( A. k e. _om ( h ` k ) R ( h ` suc k ) /\ F : A --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |
| 138 | 137 | ex | |- ( A. k e. _om ( h ` k ) R ( h ` suc k ) -> ( F : A --> ( ~P A \ { (/) } ) -> E. g ( g : _om --> A /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) ) |
| 139 | 138 | exlimiv | |- ( E. h A. k e. _om ( h ` k ) R ( h ` suc k ) -> ( F : A --> ( ~P A \ { (/) } ) -> E. g ( g : _om --> A /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) ) |
| 140 | 75 76 139 | sylc | |- ( ( A =/= (/) /\ F : A --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |