This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 3-Jan-2002) (Proof shortened by Mario Carneiro, 10-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axacnd | ⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axacndlem5 | ⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑣 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) | |
| 2 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑥 | |
| 3 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑦 | |
| 4 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑤 | |
| 5 | 2 3 4 | nf3an | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) |
| 6 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑧 𝑧 = 𝑥 | |
| 7 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑧 𝑧 = 𝑦 | |
| 8 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑧 𝑧 = 𝑤 | |
| 9 | 6 7 8 | nf3an | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) |
| 10 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑥 | |
| 11 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦 | |
| 12 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑤 | |
| 13 | 10 11 12 | nf3an | ⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) |
| 14 | nfcvf | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 𝑦 ) | |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑦 ) |
| 16 | nfcvd | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑣 ) | |
| 17 | 15 16 | nfeld | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑦 ∈ 𝑣 ) |
| 18 | nfcvf | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑤 → Ⅎ 𝑧 𝑤 ) | |
| 19 | 18 | 3ad2ant3 | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑤 ) |
| 20 | 16 19 | nfeld | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑣 ∈ 𝑤 ) |
| 21 | 17 20 | nfand | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ) |
| 22 | 5 21 | nfald | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ) |
| 23 | nfnae | ⊢ Ⅎ 𝑤 ¬ ∀ 𝑧 𝑧 = 𝑥 | |
| 24 | nfnae | ⊢ Ⅎ 𝑤 ¬ ∀ 𝑧 𝑧 = 𝑦 | |
| 25 | nfnae | ⊢ Ⅎ 𝑤 ¬ ∀ 𝑧 𝑧 = 𝑤 | |
| 26 | 23 24 25 | nf3an | ⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) |
| 27 | 15 19 | nfeld | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑦 ∈ 𝑤 ) |
| 28 | nfcvf | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑧 𝑥 ) | |
| 29 | 28 | 3ad2ant1 | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑥 ) |
| 30 | 19 29 | nfeld | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑤 ∈ 𝑥 ) |
| 31 | 27 30 | nfand | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) |
| 32 | 21 31 | nfand | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 33 | 26 32 | nfexd | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 34 | 15 19 | nfeqd | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑦 = 𝑤 ) |
| 35 | 33 34 | nfbid | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
| 36 | 9 35 | nfald | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
| 37 | 26 36 | nfexd | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
| 38 | 22 37 | nfimd | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 39 | nfcvd | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑥 𝑣 ) | |
| 40 | nfcvf2 | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑥 𝑧 ) | |
| 41 | 40 | 3ad2ant1 | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑥 𝑧 ) |
| 42 | 39 41 | nfeqd | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑥 𝑣 = 𝑧 ) |
| 43 | 5 42 | nfan1 | ⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) |
| 44 | simpr | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → 𝑣 = 𝑧 ) | |
| 45 | 44 | eleq2d | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ 𝑧 ) ) |
| 46 | 44 | eleq1d | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( 𝑣 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) |
| 47 | 45 46 | anbi12d | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
| 48 | 43 47 | albid | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ↔ ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
| 49 | nfcvd | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑤 𝑣 ) | |
| 50 | nfcvf2 | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑤 → Ⅎ 𝑤 𝑧 ) | |
| 51 | 50 | 3ad2ant3 | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑤 𝑧 ) |
| 52 | 49 51 | nfeqd | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑤 𝑣 = 𝑧 ) |
| 53 | 26 52 | nfan1 | ⊢ Ⅎ 𝑤 ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) |
| 54 | nfcvd | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑦 𝑣 ) | |
| 55 | nfcvf2 | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑦 𝑧 ) | |
| 56 | 55 | 3ad2ant2 | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑦 𝑧 ) |
| 57 | 54 56 | nfeqd | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑦 𝑣 = 𝑧 ) |
| 58 | 9 57 | nfan1 | ⊢ Ⅎ 𝑦 ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) |
| 59 | 47 | anbi1d | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 60 | 53 59 | exbid | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 61 | 60 | bibi1d | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 62 | 58 61 | albid | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 63 | 53 62 | exbid | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 64 | 48 63 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 65 | 64 | ex | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ( 𝑣 = 𝑧 → ( ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) ) |
| 66 | 13 38 65 | cbvald | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ( ∀ 𝑣 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 67 | 9 66 | albid | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ( ∀ 𝑦 ∀ 𝑣 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 68 | 5 67 | exbid | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ( ∃ 𝑥 ∀ 𝑦 ∀ 𝑣 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 69 | 1 68 | mpbii | ⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 70 | 69 | 3exp | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( ¬ ∀ 𝑧 𝑧 = 𝑤 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) ) |
| 71 | axacndlem2 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) | |
| 72 | 71 | aecoms | ⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 73 | axacndlem3 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) | |
| 74 | 73 | aecoms | ⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 75 | nfae | ⊢ Ⅎ 𝑦 ∀ 𝑧 𝑧 = 𝑤 | |
| 76 | simpr | ⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → 𝑧 ∈ 𝑤 ) | |
| 77 | 76 | alimi | ⊢ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∀ 𝑥 𝑧 ∈ 𝑤 ) |
| 78 | nd3 | ⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ¬ ∀ 𝑥 𝑧 ∈ 𝑤 ) | |
| 79 | 78 | pm2.21d | ⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ( ∀ 𝑥 𝑧 ∈ 𝑤 → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 80 | 77 79 | syl5 | ⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 81 | 80 | axc4i | ⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 82 | 75 81 | alrimi | ⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 83 | 82 | 19.8ad | ⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 84 | 70 72 74 83 | pm2.61iii | ⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |