This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 3-Jan-2002) (Proof shortened by Mario Carneiro, 10-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axacndlem5 | ⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axacndlem4 | ⊢ ∃ 𝑥 ∀ 𝑣 ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) | |
| 2 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 3 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑥 | |
| 4 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑤 | |
| 5 | 2 3 4 | nf3an | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
| 6 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 7 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑥 | |
| 8 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑤 | |
| 9 | 6 7 8 | nf3an | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
| 10 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 11 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑥 | |
| 12 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑤 | |
| 13 | 10 11 12 | nf3an | ⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
| 14 | nfcvd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑣 ) | |
| 15 | nfcvf | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) | |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑧 ) |
| 17 | 14 16 | nfeld | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑣 ∈ 𝑧 ) |
| 18 | nfcvf | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑤 → Ⅎ 𝑦 𝑤 ) | |
| 19 | 18 | 3ad2ant3 | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑤 ) |
| 20 | 16 19 | nfeld | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑧 ∈ 𝑤 ) |
| 21 | 17 20 | nfand | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) |
| 22 | 5 21 | nfald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) |
| 23 | nfnae | ⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 24 | nfnae | ⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑥 | |
| 25 | nfnae | ⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑤 | |
| 26 | 23 24 25 | nf3an | ⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
| 27 | nfv | ⊢ Ⅎ 𝑣 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) | |
| 28 | 14 19 | nfeld | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑣 ∈ 𝑤 ) |
| 29 | nfcvf | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) | |
| 30 | 29 | 3ad2ant2 | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑥 ) |
| 31 | 19 30 | nfeld | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑤 ∈ 𝑥 ) |
| 32 | 28 31 | nfand | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) |
| 33 | 21 32 | nfand | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 34 | 26 33 | nfexd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 35 | 14 19 | nfeqd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 𝑣 = 𝑤 ) |
| 36 | 34 35 | nfbid | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) |
| 37 | 27 36 | nfald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) |
| 38 | 26 37 | nfexd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) |
| 39 | 22 38 | nfimd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ) |
| 40 | 13 39 | nfald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ) |
| 41 | nfcvd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑧 𝑣 ) | |
| 42 | nfcvf2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) | |
| 43 | 42 | 3ad2ant1 | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑧 𝑦 ) |
| 44 | 41 43 | nfeqd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑧 𝑣 = 𝑦 ) |
| 45 | 13 44 | nfan1 | ⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) |
| 46 | nfcvd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑥 𝑣 ) | |
| 47 | nfcvf2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑥 𝑦 ) | |
| 48 | 47 | 3ad2ant2 | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑥 𝑦 ) |
| 49 | 46 48 | nfeqd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑥 𝑣 = 𝑦 ) |
| 50 | 5 49 | nfan1 | ⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) |
| 51 | simpr | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → 𝑣 = 𝑦 ) | |
| 52 | 51 | eleq1d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( 𝑣 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 53 | 52 | anbi1d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
| 54 | 50 53 | albid | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ↔ ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
| 55 | nfcvd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑤 𝑣 ) | |
| 56 | nfcvf2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑤 → Ⅎ 𝑤 𝑦 ) | |
| 57 | 56 | 3ad2ant3 | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑤 𝑦 ) |
| 58 | 55 57 | nfeqd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → Ⅎ 𝑤 𝑣 = 𝑦 ) |
| 59 | 26 58 | nfan1 | ⊢ Ⅎ 𝑤 ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) |
| 60 | 51 | eleq1d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( 𝑣 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) |
| 61 | 60 | anbi1d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 62 | 53 61 | anbi12d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 63 | 59 62 | exbid | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 64 | 51 | eqeq1d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( 𝑣 = 𝑤 ↔ 𝑦 = 𝑤 ) ) |
| 65 | 63 64 | bibi12d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 66 | 65 | ex | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( 𝑣 = 𝑦 → ( ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 67 | 9 36 66 | cbvald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 68 | 26 67 | exbid | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 69 | 68 | adantr | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 70 | 54 69 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 71 | 45 70 | albid | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) ∧ 𝑣 = 𝑦 ) → ( ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 72 | 71 | ex | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( 𝑣 = 𝑦 → ( ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) ) |
| 73 | 9 40 72 | cbvald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( ∀ 𝑣 ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 74 | 5 73 | exbid | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ( ∃ 𝑥 ∀ 𝑣 ∀ 𝑧 ( ∀ 𝑥 ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑣 ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑣 = 𝑤 ) ) ↔ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 75 | 1 74 | mpbii | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑤 ) → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 76 | 75 | 3exp | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑦 𝑦 = 𝑤 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) ) |
| 77 | axacndlem3 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) | |
| 78 | axacndlem1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) | |
| 79 | 78 | aecoms | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 80 | nfae | ⊢ Ⅎ 𝑧 ∀ 𝑦 𝑦 = 𝑤 | |
| 81 | en2lp | ⊢ ¬ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑦 ) | |
| 82 | elequ2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑤 ) ) | |
| 83 | 82 | anbi2d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑦 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
| 84 | 81 83 | mtbii | ⊢ ( 𝑦 = 𝑤 → ¬ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) |
| 85 | 84 | sps | ⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ¬ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) |
| 86 | 85 | pm2.21d | ⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 87 | 86 | spsd | ⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 88 | 80 87 | alrimi | ⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 89 | 88 | axc4i | ⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 90 | 89 | 19.8ad | ⊢ ( ∀ 𝑦 𝑦 = 𝑤 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 91 | 76 77 79 90 | pm2.61iii | ⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |