This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axacndlem2 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfae | ⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥 = 𝑧 | |
| 2 | nfae | ⊢ Ⅎ 𝑧 ∀ 𝑥 𝑥 = 𝑧 | |
| 3 | simpr | ⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → 𝑧 ∈ 𝑤 ) | |
| 4 | 3 | alimi | ⊢ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∀ 𝑥 𝑧 ∈ 𝑤 ) |
| 5 | nd1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∀ 𝑥 𝑧 ∈ 𝑤 ) | |
| 6 | 5 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 𝑧 ∈ 𝑤 → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 7 | 4 6 | syl5 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 8 | 2 7 | alrimi | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 9 | 1 8 | alrimi | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 10 | 9 | 19.8ad | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |