This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Extensionality ax-ext , reproved from conditionless ZFC version and predicate calculus. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Aug-2003) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfcndext | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axextnd | ⊢ ∃ 𝑧 ( ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) | |
| 2 | 1 | 19.36iv | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) |