This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If in a context x is not free in ps and ch , then it is not free in ( ps /\ ch ) . (Contributed by Mario Carneiro, 7-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfand.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| nfand.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | ||
| Assertion | nfand | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜓 ∧ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfand.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| 2 | nfand.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | |
| 3 | df-an | ⊢ ( ( 𝜓 ∧ 𝜒 ) ↔ ¬ ( 𝜓 → ¬ 𝜒 ) ) | |
| 4 | 2 | nfnd | ⊢ ( 𝜑 → Ⅎ 𝑥 ¬ 𝜒 ) |
| 5 | 1 4 | nfimd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜓 → ¬ 𝜒 ) ) |
| 6 | 5 | nfnd | ⊢ ( 𝜑 → Ⅎ 𝑥 ¬ ( 𝜓 → ¬ 𝜒 ) ) |
| 7 | 3 6 | nfxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜓 ∧ 𝜒 ) ) |