This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If in a context x is not free in ps and ch , then it is not free in ( ps <-> ch ) . (Contributed by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 29-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfbid.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| nfbid.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | ||
| Assertion | nfbid | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜓 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbid.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| 2 | nfbid.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | |
| 3 | dfbi2 | ⊢ ( ( 𝜓 ↔ 𝜒 ) ↔ ( ( 𝜓 → 𝜒 ) ∧ ( 𝜒 → 𝜓 ) ) ) | |
| 4 | 1 2 | nfimd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜓 → 𝜒 ) ) |
| 5 | 2 1 | nfimd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜒 → 𝜓 ) ) |
| 6 | 4 5 | nfand | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ( 𝜓 → 𝜒 ) ∧ ( 𝜒 → 𝜓 ) ) ) |
| 7 | 3 6 | nfxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜓 ↔ 𝜒 ) ) |