This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for assamulgscm (induction step). (Contributed by AV, 26-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | assamulgscm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| assamulgscm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| assamulgscm.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| assamulgscm.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| assamulgscm.g | ⊢ 𝐺 = ( mulGrp ‘ 𝐹 ) | ||
| assamulgscm.p | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| assamulgscm.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑊 ) | ||
| assamulgscm.e | ⊢ 𝐸 = ( .g ‘ 𝐻 ) | ||
| Assertion | assamulgscmlem2 | ⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assamulgscm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | assamulgscm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | assamulgscm.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 4 | assamulgscm.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | assamulgscm.g | ⊢ 𝐺 = ( mulGrp ‘ 𝐹 ) | |
| 6 | assamulgscm.p | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 7 | assamulgscm.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑊 ) | |
| 8 | assamulgscm.e | ⊢ 𝐸 = ( .g ‘ 𝐻 ) | |
| 9 | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) | |
| 10 | 7 | ringmgp | ⊢ ( 𝑊 ∈ Ring → 𝐻 ∈ Mnd ) |
| 11 | 9 10 | syl | ⊢ ( 𝑊 ∈ AssAlg → 𝐻 ∈ Mnd ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐻 ∈ Mnd ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐻 ∈ Mnd ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → 𝐻 ∈ Mnd ) |
| 15 | simpll | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → 𝑦 ∈ ℕ0 ) | |
| 16 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑊 ∈ LMod ) |
| 18 | simpll | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐴 ∈ 𝐵 ) | |
| 19 | simplr | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑋 ∈ 𝑉 ) | |
| 20 | 1 2 4 3 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 21 | 17 18 19 20 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 22 | 21 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 24 | 7 1 | mgpbas | ⊢ 𝑉 = ( Base ‘ 𝐻 ) |
| 25 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 26 | 7 25 | mgpplusg | ⊢ ( .r ‘ 𝑊 ) = ( +g ‘ 𝐻 ) |
| 27 | 24 8 26 | mulgnn0p1 | ⊢ ( ( 𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) |
| 28 | 14 15 23 27 | syl3anc | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) |
| 29 | oveq1 | ⊢ ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) | |
| 30 | simprr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑊 ∈ AssAlg ) | |
| 31 | 2 | eqcomi | ⊢ ( Scalar ‘ 𝑊 ) = 𝐹 |
| 32 | 31 | fveq2i | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ 𝐹 ) |
| 33 | 5 32 | mgpbas | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ 𝐺 ) |
| 34 | 2 | assasca | ⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |
| 35 | 5 | ringmgp | ⊢ ( 𝐹 ∈ Ring → 𝐺 ∈ Mnd ) |
| 36 | 34 35 | syl | ⊢ ( 𝑊 ∈ AssAlg → 𝐺 ∈ Mnd ) |
| 37 | 36 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐺 ∈ Mnd ) |
| 38 | 37 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐺 ∈ Mnd ) |
| 39 | simpl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑦 ∈ ℕ0 ) | |
| 40 | 3 | a1i | ⊢ ( 𝑊 ∈ AssAlg → 𝐵 = ( Base ‘ 𝐹 ) ) |
| 41 | 2 | fveq2i | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 42 | 40 41 | eqtrdi | ⊢ ( 𝑊 ∈ AssAlg → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 43 | 42 | eleq2d | ⊢ ( 𝑊 ∈ AssAlg → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 44 | 43 | biimpcd | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 46 | 45 | imp | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 47 | 46 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 48 | 33 6 38 39 47 | mulgnn0cld | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 49 | simprlr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑋 ∈ 𝑉 ) | |
| 50 | 24 8 13 39 49 | mulgnn0cld | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝑦 𝐸 𝑋 ) ∈ 𝑉 ) |
| 51 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 52 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 53 | 1 51 52 4 25 | assaass | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑦 𝐸 𝑋 ) ∈ 𝑉 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ) ) → ( ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) ) |
| 54 | 30 48 50 22 53 | syl13anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) ) |
| 55 | 1 51 52 4 25 | assaassr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑦 𝐸 𝑋 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) |
| 56 | 30 47 50 49 55 | syl13anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) |
| 57 | 56 | oveq2d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) ) |
| 58 | 24 8 26 | mulgnn0p1 | ⊢ ( ( 𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) = ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) |
| 59 | 13 39 49 58 | syl3anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) = ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) |
| 60 | 59 | eqcomd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) = ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) |
| 61 | 60 | oveq2d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) = ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 62 | 61 | oveq2d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) |
| 63 | 17 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑊 ∈ LMod ) |
| 64 | peano2nn0 | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ0 ) | |
| 65 | 64 | adantr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 66 | 24 8 13 65 49 | mulgnn0cld | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 ) |
| 67 | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 68 | 1 51 4 52 67 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 ) ) → ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) |
| 69 | 68 | eqcomd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) = ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 70 | 63 48 47 66 69 | syl13anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) = ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 71 | 57 62 70 | 3eqtrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) = ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 72 | simprll | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐴 ∈ 𝐵 ) | |
| 73 | 5 3 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 74 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 75 | 5 74 | mgpplusg | ⊢ ( .r ‘ 𝐹 ) = ( +g ‘ 𝐺 ) |
| 76 | 73 6 75 | mulgnn0p1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) ↑ 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) ) |
| 77 | 38 39 72 76 | syl3anc | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) ↑ 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) ) |
| 78 | 2 | a1i | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
| 79 | 78 | fveq2d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( .r ‘ 𝐹 ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 80 | 79 | oveqd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) ) |
| 81 | 77 80 | eqtrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) ↑ 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) ) |
| 82 | 81 | eqcomd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) = ( ( 𝑦 + 1 ) ↑ 𝐴 ) ) |
| 83 | 82 | oveq1d | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 84 | 54 71 83 | 3eqtrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 85 | 29 84 | sylan9eqr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 86 | 28 85 | eqtrd | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 87 | 86 | exp31 | ⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) ) |