This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binomial coefficient: N + 1 choose N . (Contributed by NM, 20-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcnp1n | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) C 𝑁 ) = ( 𝑁 + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 2 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 3 | bccmpl | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 + 1 ) C 𝑁 ) = ( ( 𝑁 + 1 ) C ( ( 𝑁 + 1 ) − 𝑁 ) ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) C 𝑁 ) = ( ( 𝑁 + 1 ) C ( ( 𝑁 + 1 ) − 𝑁 ) ) ) |
| 5 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 6 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 7 | pncan2 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 𝑁 ) = 1 ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) − 𝑁 ) = 1 ) |
| 9 | 8 | oveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) C ( ( 𝑁 + 1 ) − 𝑁 ) ) = ( ( 𝑁 + 1 ) C 1 ) ) |
| 10 | bcn1 | ⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ( 𝑁 + 1 ) C 1 ) = ( 𝑁 + 1 ) ) | |
| 11 | 1 10 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) C 1 ) = ( 𝑁 + 1 ) ) |
| 12 | 4 9 11 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) C 𝑁 ) = ( 𝑁 + 1 ) ) |