This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a number between 0 and _pi is nonnegative. (Contributed by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinq12ge0 | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → 0 ≤ ( sin ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | pire | ⊢ π ∈ ℝ | |
| 3 | 1 2 | elicc2i | ⊢ ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 4 | 3 | simp1bi | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → 𝐴 ∈ ℝ ) |
| 5 | rexr | ⊢ ( 0 ∈ ℝ → 0 ∈ ℝ* ) | |
| 6 | rexr | ⊢ ( π ∈ ℝ → π ∈ ℝ* ) | |
| 7 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( 𝐴 ∈ ( 0 (,) π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < π ) ) ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,) π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < π ) ) ) |
| 9 | 1 2 8 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,) π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < π ) ) |
| 10 | sinq12gt0 | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → 0 < ( sin ‘ 𝐴 ) ) | |
| 11 | 9 10 | sylbir | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < π ) → 0 < ( sin ‘ 𝐴 ) ) |
| 12 | 11 | 3expib | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 𝐴 ∧ 𝐴 < π ) → 0 < ( sin ‘ 𝐴 ) ) ) |
| 13 | 4 12 | syl | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( ( 0 < 𝐴 ∧ 𝐴 < π ) → 0 < ( sin ‘ 𝐴 ) ) ) |
| 14 | 4 | resincld | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
| 15 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( sin ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( sin ‘ 𝐴 ) → 0 ≤ ( sin ‘ 𝐴 ) ) ) | |
| 16 | 1 14 15 | sylancr | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 0 < ( sin ‘ 𝐴 ) → 0 ≤ ( sin ‘ 𝐴 ) ) ) |
| 17 | 13 16 | syld | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( ( 0 < 𝐴 ∧ 𝐴 < π ) → 0 ≤ ( sin ‘ 𝐴 ) ) ) |
| 18 | 17 | expd | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 0 < 𝐴 → ( 𝐴 < π → 0 ≤ ( sin ‘ 𝐴 ) ) ) ) |
| 19 | 0le0 | ⊢ 0 ≤ 0 | |
| 20 | sin0 | ⊢ ( sin ‘ 0 ) = 0 | |
| 21 | 19 20 | breqtrri | ⊢ 0 ≤ ( sin ‘ 0 ) |
| 22 | fveq2 | ⊢ ( 0 = 𝐴 → ( sin ‘ 0 ) = ( sin ‘ 𝐴 ) ) | |
| 23 | 21 22 | breqtrid | ⊢ ( 0 = 𝐴 → 0 ≤ ( sin ‘ 𝐴 ) ) |
| 24 | 23 | a1i13 | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 0 = 𝐴 → ( 𝐴 < π → 0 ≤ ( sin ‘ 𝐴 ) ) ) ) |
| 25 | 3 | simp2bi | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → 0 ≤ 𝐴 ) |
| 26 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) | |
| 27 | 1 4 26 | sylancr | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 28 | 25 27 | mpbid | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
| 29 | 18 24 28 | mpjaod | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 𝐴 < π → 0 ≤ ( sin ‘ 𝐴 ) ) ) |
| 30 | sinpi | ⊢ ( sin ‘ π ) = 0 | |
| 31 | 19 30 | breqtrri | ⊢ 0 ≤ ( sin ‘ π ) |
| 32 | fveq2 | ⊢ ( 𝐴 = π → ( sin ‘ 𝐴 ) = ( sin ‘ π ) ) | |
| 33 | 31 32 | breqtrrid | ⊢ ( 𝐴 = π → 0 ≤ ( sin ‘ 𝐴 ) ) |
| 34 | 33 | a1i | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 𝐴 = π → 0 ≤ ( sin ‘ 𝐴 ) ) ) |
| 35 | 3 | simp3bi | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → 𝐴 ≤ π ) |
| 36 | leloe | ⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝐴 ≤ π ↔ ( 𝐴 < π ∨ 𝐴 = π ) ) ) | |
| 37 | 4 2 36 | sylancl | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 𝐴 ≤ π ↔ ( 𝐴 < π ∨ 𝐴 = π ) ) ) |
| 38 | 35 37 | mpbid | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → ( 𝐴 < π ∨ 𝐴 = π ) ) |
| 39 | 29 34 38 | mpjaod | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → 0 ≤ ( sin ‘ 𝐴 ) ) |