This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a choice set of length A . (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acni | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 | 2 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 4 | 3 | exbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ↔ ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 5 | acnrcl | ⊢ ( 𝑋 ∈ AC 𝐴 → 𝐴 ∈ V ) | |
| 6 | isacn | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ 𝐴 ∈ V ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 7 | 5 6 | mpdan | ⊢ ( 𝑋 ∈ AC 𝐴 → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 8 | 7 | ibi | ⊢ ( 𝑋 ∈ AC 𝐴 → ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) → ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 10 | pwexg | ⊢ ( 𝑋 ∈ AC 𝐴 → 𝒫 𝑋 ∈ V ) | |
| 11 | 10 | difexd | ⊢ ( 𝑋 ∈ AC 𝐴 → ( 𝒫 𝑋 ∖ { ∅ } ) ∈ V ) |
| 12 | 11 5 | elmapd | ⊢ ( 𝑋 ∈ AC 𝐴 → ( 𝐹 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ↔ 𝐹 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) ) |
| 13 | 12 | biimpar | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) → 𝐹 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) |
| 14 | 4 9 13 | rspcdva | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |