This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two bijections as bijection onto the image of the range of the first bijection. (Contributed by AV, 15-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocoima | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1-onto→ ( 𝐺 “ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 | ⊢ ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 → 𝐺 : 𝐶 –1-1→ 𝐷 ) | |
| 2 | 1 | anim1i | ⊢ ( ( 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐺 : 𝐶 –1-1→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) ) |
| 3 | 2 | 3adant1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐺 : 𝐶 –1-1→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) ) |
| 4 | f1ores | ⊢ ( ( 𝐺 : 𝐶 –1-1→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐺 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝐺 “ 𝐵 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐺 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝐺 “ 𝐵 ) ) |
| 6 | simp1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 7 | f1oco | ⊢ ( ( ( 𝐺 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝐺 “ 𝐵 ) ∧ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( 𝐺 ↾ 𝐵 ) ∘ 𝐹 ) : 𝐴 –1-1-onto→ ( 𝐺 “ 𝐵 ) ) | |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐺 ↾ 𝐵 ) ∘ 𝐹 ) : 𝐴 –1-1-onto→ ( 𝐺 “ 𝐵 ) ) |
| 9 | f1ofo | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
| 10 | forn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
| 12 | 11 | eqimssd | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ran 𝐹 ⊆ 𝐵 ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) → ran 𝐹 ⊆ 𝐵 ) |
| 14 | cores | ⊢ ( ran 𝐹 ⊆ 𝐵 → ( ( 𝐺 ↾ 𝐵 ) ∘ 𝐹 ) = ( 𝐺 ∘ 𝐹 ) ) | |
| 15 | 14 | eqcomd | ⊢ ( ran 𝐹 ⊆ 𝐵 → ( 𝐺 ∘ 𝐹 ) = ( ( 𝐺 ↾ 𝐵 ) ∘ 𝐹 ) ) |
| 16 | 13 15 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐺 ∘ 𝐹 ) = ( ( 𝐺 ↾ 𝐵 ) ∘ 𝐹 ) ) |
| 17 | 16 | f1oeq1d | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1-onto→ ( 𝐺 “ 𝐵 ) ↔ ( ( 𝐺 ↾ 𝐵 ) ∘ 𝐹 ) : 𝐴 –1-1-onto→ ( 𝐺 “ 𝐵 ) ) ) |
| 18 | 8 17 | mpbird | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐺 : 𝐶 –1-1-onto→ 𝐷 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 –1-1-onto→ ( 𝐺 “ 𝐵 ) ) |