This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of three bijections as bijection from the image of the domain onto the image of the range of the middle bijection. (Contributed by AV, 15-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3f1oss1 | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ( H o. G ) o. `' F ) : ( F " C ) -1-1-onto-> ( H " D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv | |- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
|
| 2 | f1of1 | |- ( `' F : B -1-1-onto-> A -> `' F : B -1-1-> A ) |
|
| 3 | 1 2 | syl | |- ( F : A -1-1-onto-> B -> `' F : B -1-1-> A ) |
| 4 | 3 | 3ad2ant1 | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> `' F : B -1-1-> A ) |
| 5 | 4 | adantr | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> `' F : B -1-1-> A ) |
| 6 | cnvimass | |- ( `' `' F " C ) C_ dom `' F |
|
| 7 | f1of | |- ( `' F : B -1-1-onto-> A -> `' F : B --> A ) |
|
| 8 | fdm | |- ( `' F : B --> A -> dom `' F = B ) |
|
| 9 | 8 | eqcomd | |- ( `' F : B --> A -> B = dom `' F ) |
| 10 | 1 7 9 | 3syl | |- ( F : A -1-1-onto-> B -> B = dom `' F ) |
| 11 | 6 10 | sseqtrrid | |- ( F : A -1-1-onto-> B -> ( `' `' F " C ) C_ B ) |
| 12 | 11 | 3ad2ant1 | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> ( `' `' F " C ) C_ B ) |
| 13 | 12 | adantr | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( `' `' F " C ) C_ B ) |
| 14 | f1ofn | |- ( `' F : B -1-1-onto-> A -> `' F Fn B ) |
|
| 15 | 1 14 | syl | |- ( F : A -1-1-onto-> B -> `' F Fn B ) |
| 16 | 15 | 3ad2ant1 | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> `' F Fn B ) |
| 17 | 16 | adantr | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> `' F Fn B ) |
| 18 | eqidd | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ran `' F i^i C ) = ( ran `' F i^i C ) ) |
|
| 19 | eqidd | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( `' `' F " C ) = ( `' `' F " C ) ) |
|
| 20 | 17 18 19 | rescnvimafod | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) -onto-> ( ran `' F i^i C ) ) |
| 21 | fof | |- ( ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) -onto-> ( ran `' F i^i C ) -> ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) --> ( ran `' F i^i C ) ) |
|
| 22 | 20 21 | syl | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) --> ( ran `' F i^i C ) ) |
| 23 | f1resf1 | |- ( ( `' F : B -1-1-> A /\ ( `' `' F " C ) C_ B /\ ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) --> ( ran `' F i^i C ) ) -> ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) -1-1-> ( ran `' F i^i C ) ) |
|
| 24 | 5 13 22 23 | syl3anc | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) -1-1-> ( ran `' F i^i C ) ) |
| 25 | f1of1 | |- ( G : C -1-1-onto-> D -> G : C -1-1-> D ) |
|
| 26 | 25 | 3ad2ant2 | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> G : C -1-1-> D ) |
| 27 | 26 | adantr | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> G : C -1-1-> D ) |
| 28 | inss2 | |- ( ran `' F i^i C ) C_ C |
|
| 29 | f1ores | |- ( ( G : C -1-1-> D /\ ( ran `' F i^i C ) C_ C ) -> ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> ( G " ( ran `' F i^i C ) ) ) |
|
| 30 | 27 28 29 | sylancl | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> ( G " ( ran `' F i^i C ) ) ) |
| 31 | f1ofo | |- ( `' F : B -1-1-onto-> A -> `' F : B -onto-> A ) |
|
| 32 | forn | |- ( `' F : B -onto-> A -> ran `' F = A ) |
|
| 33 | 1 31 32 | 3syl | |- ( F : A -1-1-onto-> B -> ran `' F = A ) |
| 34 | 33 | 3ad2ant1 | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> ran `' F = A ) |
| 35 | 34 | adantr | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ran `' F = A ) |
| 36 | 35 | ineq1d | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ran `' F i^i C ) = ( A i^i C ) ) |
| 37 | incom | |- ( A i^i C ) = ( C i^i A ) |
|
| 38 | dfss2 | |- ( C C_ A <-> ( C i^i A ) = C ) |
|
| 39 | 38 | biimpi | |- ( C C_ A -> ( C i^i A ) = C ) |
| 40 | 37 39 | eqtrid | |- ( C C_ A -> ( A i^i C ) = C ) |
| 41 | 40 | ad2antrl | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( A i^i C ) = C ) |
| 42 | 36 41 | eqtrd | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ran `' F i^i C ) = C ) |
| 43 | 42 | imaeq2d | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( G " ( ran `' F i^i C ) ) = ( G " C ) ) |
| 44 | f1ofn | |- ( G : C -1-1-onto-> D -> G Fn C ) |
|
| 45 | fnima | |- ( G Fn C -> ( G " C ) = ran G ) |
|
| 46 | 44 45 | syl | |- ( G : C -1-1-onto-> D -> ( G " C ) = ran G ) |
| 47 | f1ofo | |- ( G : C -1-1-onto-> D -> G : C -onto-> D ) |
|
| 48 | forn | |- ( G : C -onto-> D -> ran G = D ) |
|
| 49 | 47 48 | syl | |- ( G : C -1-1-onto-> D -> ran G = D ) |
| 50 | 46 49 | eqtrd | |- ( G : C -1-1-onto-> D -> ( G " C ) = D ) |
| 51 | 50 | 3ad2ant2 | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> ( G " C ) = D ) |
| 52 | 51 | adantr | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( G " C ) = D ) |
| 53 | 43 52 | eqtrd | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( G " ( ran `' F i^i C ) ) = D ) |
| 54 | 53 | eqcomd | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> D = ( G " ( ran `' F i^i C ) ) ) |
| 55 | 54 | f1oeq3d | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> D <-> ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> ( G " ( ran `' F i^i C ) ) ) ) |
| 56 | 30 55 | mpbird | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> D ) |
| 57 | f1orel | |- ( F : A -1-1-onto-> B -> Rel F ) |
|
| 58 | 57 | 3ad2ant1 | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> Rel F ) |
| 59 | 58 | adantr | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> Rel F ) |
| 60 | dfrel2 | |- ( Rel F <-> `' `' F = F ) |
|
| 61 | 59 60 | sylib | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> `' `' F = F ) |
| 62 | 61 | eqcomd | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> F = `' `' F ) |
| 63 | 62 | imaeq1d | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( F " C ) = ( `' `' F " C ) ) |
| 64 | 63 | f1oeq2d | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ( G o. `' F ) : ( F " C ) -1-1-onto-> D <-> ( G o. `' F ) : ( `' `' F " C ) -1-1-onto-> D ) ) |
| 65 | 1 7 | syl | |- ( F : A -1-1-onto-> B -> `' F : B --> A ) |
| 66 | 65 | 3ad2ant1 | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> `' F : B --> A ) |
| 67 | 66 | adantr | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> `' F : B --> A ) |
| 68 | eqid | |- ( ran `' F i^i C ) = ( ran `' F i^i C ) |
|
| 69 | eqid | |- ( `' `' F " C ) = ( `' `' F " C ) |
|
| 70 | eqid | |- ( `' F |` ( `' `' F " C ) ) = ( `' F |` ( `' `' F " C ) ) |
|
| 71 | f1of | |- ( G : C -1-1-onto-> D -> G : C --> D ) |
|
| 72 | 71 | 3ad2ant2 | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) -> G : C --> D ) |
| 73 | 72 | adantr | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> G : C --> D ) |
| 74 | eqid | |- ( G |` ( ran `' F i^i C ) ) = ( G |` ( ran `' F i^i C ) ) |
|
| 75 | 67 68 69 70 73 74 | fcoresf1ob | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ( G o. `' F ) : ( `' `' F " C ) -1-1-onto-> D <-> ( ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) -1-1-> ( ran `' F i^i C ) /\ ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> D ) ) ) |
| 76 | 64 75 | bitrd | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ( G o. `' F ) : ( F " C ) -1-1-onto-> D <-> ( ( `' F |` ( `' `' F " C ) ) : ( `' `' F " C ) -1-1-> ( ran `' F i^i C ) /\ ( G |` ( ran `' F i^i C ) ) : ( ran `' F i^i C ) -1-1-onto-> D ) ) ) |
| 77 | 24 56 76 | mpbir2and | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( G o. `' F ) : ( F " C ) -1-1-onto-> D ) |
| 78 | simpl3 | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> H : E -1-1-onto-> I ) |
|
| 79 | simprr | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> D C_ E ) |
|
| 80 | f1ocoima | |- ( ( ( G o. `' F ) : ( F " C ) -1-1-onto-> D /\ H : E -1-1-onto-> I /\ D C_ E ) -> ( H o. ( G o. `' F ) ) : ( F " C ) -1-1-onto-> ( H " D ) ) |
|
| 81 | 77 78 79 80 | syl3anc | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( H o. ( G o. `' F ) ) : ( F " C ) -1-1-onto-> ( H " D ) ) |
| 82 | coass | |- ( ( H o. G ) o. `' F ) = ( H o. ( G o. `' F ) ) |
|
| 83 | f1oeq1 | |- ( ( ( H o. G ) o. `' F ) = ( H o. ( G o. `' F ) ) -> ( ( ( H o. G ) o. `' F ) : ( F " C ) -1-1-onto-> ( H " D ) <-> ( H o. ( G o. `' F ) ) : ( F " C ) -1-1-onto-> ( H " D ) ) ) |
|
| 84 | 82 83 | ax-mp | |- ( ( ( H o. G ) o. `' F ) : ( F " C ) -1-1-onto-> ( H " D ) <-> ( H o. ( G o. `' F ) ) : ( F " C ) -1-1-onto-> ( H " D ) ) |
| 85 | 81 84 | sylibr | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D /\ H : E -1-1-onto-> I ) /\ ( C C_ A /\ D C_ E ) ) -> ( ( H o. G ) o. `' F ) : ( F " C ) -1-1-onto-> ( H " D ) ) |