This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there are two different sets fulfilling a wff (by implicit substitution), then there is no unique set fulfilling the wff. (Contributed by AV, 20-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2nreu.a | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2nreu.b | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | 2nreu | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝜓 ∧ 𝜒 ) → ¬ ∃! 𝑥 ∈ 𝑋 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nreu.a | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 2nreu.b | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝐴 ∈ 𝑋 ) | |
| 4 | simpl2 | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝐵 ∈ 𝑋 ) | |
| 5 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜓 ) | |
| 6 | 2 | sbcieg | ⊢ ( 𝐵 ∈ 𝑋 → ( [ 𝐵 / 𝑥 ] 𝜑 ↔ 𝜒 ) ) |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) → ( [ 𝐵 / 𝑥 ] 𝜑 ↔ 𝜒 ) ) |
| 8 | 7 | biimprd | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) → ( 𝜒 → [ 𝐵 / 𝑥 ] 𝜑 ) ) |
| 9 | 8 | adantld | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝜓 ∧ 𝜒 ) → [ 𝐵 / 𝑥 ] 𝜑 ) ) |
| 10 | 9 | imp | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → [ 𝐵 / 𝑥 ] 𝜑 ) |
| 11 | 5 10 | jca | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ) |
| 12 | simpl3 | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝐴 ≠ 𝐵 ) | |
| 13 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → 𝐴 ∈ 𝑋 ) | |
| 14 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → 𝐵 ∈ 𝑋 ) | |
| 15 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) | |
| 16 | sbcan | ⊢ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ [ 𝐴 / 𝑥 ] 𝑥 ≠ 𝑦 ) ) | |
| 17 | sbcan | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 18 | 1 | sbcieg | ⊢ ( 𝐴 ∈ 𝑋 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 19 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 | |
| 20 | 19 | sbcgf | ⊢ ( 𝐴 ∈ 𝑋 → ( [ 𝐴 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 21 | 18 20 | anbi12d | ⊢ ( 𝐴 ∈ 𝑋 → ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 22 | 17 21 | bitrid | ⊢ ( 𝐴 ∈ 𝑋 → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 23 | sbcne12 | ⊢ ( [ 𝐴 / 𝑥 ] 𝑥 ≠ 𝑦 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑥 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ) | |
| 24 | csbvarg | ⊢ ( 𝐴 ∈ 𝑋 → ⦋ 𝐴 / 𝑥 ⦌ 𝑥 = 𝐴 ) | |
| 25 | csbconstg | ⊢ ( 𝐴 ∈ 𝑋 → ⦋ 𝐴 / 𝑥 ⦌ 𝑦 = 𝑦 ) | |
| 26 | 24 25 | neeq12d | ⊢ ( 𝐴 ∈ 𝑋 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑥 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ↔ 𝐴 ≠ 𝑦 ) ) |
| 27 | 23 26 | bitrid | ⊢ ( 𝐴 ∈ 𝑋 → ( [ 𝐴 / 𝑥 ] 𝑥 ≠ 𝑦 ↔ 𝐴 ≠ 𝑦 ) ) |
| 28 | 22 27 | anbi12d | ⊢ ( 𝐴 ∈ 𝑋 → ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ [ 𝐴 / 𝑥 ] 𝑥 ≠ 𝑦 ) ↔ ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝑦 ) ) ) |
| 29 | 16 28 | bitrid | ⊢ ( 𝐴 ∈ 𝑋 → ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝑦 ) ) ) |
| 30 | 29 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝑦 ) ) ) |
| 31 | 30 | sbcbidv | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ↔ [ 𝐵 / 𝑦 ] ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝑦 ) ) ) |
| 32 | sbcan | ⊢ ( [ 𝐵 / 𝑦 ] ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝑦 ) ↔ ( [ 𝐵 / 𝑦 ] ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ [ 𝐵 / 𝑦 ] 𝐴 ≠ 𝑦 ) ) | |
| 33 | sbcan | ⊢ ( [ 𝐵 / 𝑦 ] ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝐵 / 𝑦 ] 𝜓 ∧ [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 34 | sbcg | ⊢ ( 𝐵 ∈ 𝑋 → ( [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜓 ) ) | |
| 35 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 36 | 35 | sbcbii | ⊢ ( [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) |
| 37 | sbccow | ⊢ ( [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑥 ] 𝜑 ) | |
| 38 | 37 | a1i | ⊢ ( 𝐵 ∈ 𝑋 → ( [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑥 ] 𝜑 ) ) |
| 39 | 36 38 | bitrid | ⊢ ( 𝐵 ∈ 𝑋 → ( [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑥 ] 𝜑 ) ) |
| 40 | 34 39 | anbi12d | ⊢ ( 𝐵 ∈ 𝑋 → ( ( [ 𝐵 / 𝑦 ] 𝜓 ∧ [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ) ) |
| 41 | 40 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( ( [ 𝐵 / 𝑦 ] 𝜓 ∧ [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ) ) |
| 42 | 33 41 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( [ 𝐵 / 𝑦 ] ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ) ) |
| 43 | sbcne12 | ⊢ ( [ 𝐵 / 𝑦 ] 𝐴 ≠ 𝑦 ↔ ⦋ 𝐵 / 𝑦 ⦌ 𝐴 ≠ ⦋ 𝐵 / 𝑦 ⦌ 𝑦 ) | |
| 44 | csbconstg | ⊢ ( 𝐵 ∈ 𝑋 → ⦋ 𝐵 / 𝑦 ⦌ 𝐴 = 𝐴 ) | |
| 45 | csbvarg | ⊢ ( 𝐵 ∈ 𝑋 → ⦋ 𝐵 / 𝑦 ⦌ 𝑦 = 𝐵 ) | |
| 46 | 44 45 | neeq12d | ⊢ ( 𝐵 ∈ 𝑋 → ( ⦋ 𝐵 / 𝑦 ⦌ 𝐴 ≠ ⦋ 𝐵 / 𝑦 ⦌ 𝑦 ↔ 𝐴 ≠ 𝐵 ) ) |
| 47 | 46 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( ⦋ 𝐵 / 𝑦 ⦌ 𝐴 ≠ ⦋ 𝐵 / 𝑦 ⦌ 𝑦 ↔ 𝐴 ≠ 𝐵 ) ) |
| 48 | 43 47 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( [ 𝐵 / 𝑦 ] 𝐴 ≠ 𝑦 ↔ 𝐴 ≠ 𝐵 ) ) |
| 49 | 42 48 | anbi12d | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( ( [ 𝐵 / 𝑦 ] ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ [ 𝐵 / 𝑦 ] 𝐴 ≠ 𝑦 ) ↔ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) ) |
| 50 | 32 49 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( [ 𝐵 / 𝑦 ] ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝑦 ) ↔ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) ) |
| 51 | 31 50 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) ) |
| 52 | 15 51 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 53 | rspesbca | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) → ∃ 𝑦 ∈ 𝑋 [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) | |
| 54 | 14 52 53 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ∃ 𝑦 ∈ 𝑋 [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 55 | sbcrex | ⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑋 [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) | |
| 56 | 54 55 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 57 | rspesbca | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) | |
| 58 | 13 56 57 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 59 | 3 4 11 12 58 | syl112anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 60 | pm4.61 | ⊢ ( ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ ¬ 𝑥 = 𝑦 ) ) | |
| 61 | df-ne | ⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) | |
| 62 | 61 | bicomi | ⊢ ( ¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦 ) |
| 63 | 62 | anbi2i | ⊢ ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 64 | 60 63 | bitri | ⊢ ( ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 65 | 64 | 2rexbii | ⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 66 | 59 65 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 67 | 66 | olcd | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → ( ¬ ∃ 𝑥 ∈ 𝑋 𝜑 ∨ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 68 | ianor | ⊢ ( ¬ ( ∃ 𝑥 ∈ 𝑋 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ ∃ 𝑥 ∈ 𝑋 𝜑 ∨ ¬ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) | |
| 69 | rexnal2 | ⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) | |
| 70 | 69 | bicomi | ⊢ ( ¬ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 71 | 70 | orbi2i | ⊢ ( ( ¬ ∃ 𝑥 ∈ 𝑋 𝜑 ∨ ¬ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ ∃ 𝑥 ∈ 𝑋 𝜑 ∨ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 72 | 68 71 | bitri | ⊢ ( ¬ ( ∃ 𝑥 ∈ 𝑋 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ ∃ 𝑥 ∈ 𝑋 𝜑 ∨ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 73 | reu2 | ⊢ ( ∃! 𝑥 ∈ 𝑋 𝜑 ↔ ( ∃ 𝑥 ∈ 𝑋 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) | |
| 74 | 72 73 | xchnxbir | ⊢ ( ¬ ∃! 𝑥 ∈ 𝑋 𝜑 ↔ ( ¬ ∃ 𝑥 ∈ 𝑋 𝜑 ∨ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 75 | 67 74 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → ¬ ∃! 𝑥 ∈ 𝑋 𝜑 ) |
| 76 | 75 | ex | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝜓 ∧ 𝜒 ) → ¬ ∃! 𝑥 ∈ 𝑋 𝜑 ) ) |