This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there are two different sets fulfilling a wff (by implicit substitution), then there is no unique set fulfilling the wff. (Contributed by AV, 20-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2nreu.a | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2nreu.b | |- ( x = B -> ( ph <-> ch ) ) |
||
| Assertion | 2nreu | |- ( ( A e. X /\ B e. X /\ A =/= B ) -> ( ( ps /\ ch ) -> -. E! x e. X ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nreu.a | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | 2nreu.b | |- ( x = B -> ( ph <-> ch ) ) |
|
| 3 | simpl1 | |- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> A e. X ) |
|
| 4 | simpl2 | |- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> B e. X ) |
|
| 5 | simprl | |- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> ps ) |
|
| 6 | 2 | sbcieg | |- ( B e. X -> ( [. B / x ]. ph <-> ch ) ) |
| 7 | 6 | 3ad2ant2 | |- ( ( A e. X /\ B e. X /\ A =/= B ) -> ( [. B / x ]. ph <-> ch ) ) |
| 8 | 7 | biimprd | |- ( ( A e. X /\ B e. X /\ A =/= B ) -> ( ch -> [. B / x ]. ph ) ) |
| 9 | 8 | adantld | |- ( ( A e. X /\ B e. X /\ A =/= B ) -> ( ( ps /\ ch ) -> [. B / x ]. ph ) ) |
| 10 | 9 | imp | |- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> [. B / x ]. ph ) |
| 11 | 5 10 | jca | |- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> ( ps /\ [. B / x ]. ph ) ) |
| 12 | simpl3 | |- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> A =/= B ) |
|
| 13 | simp1 | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> A e. X ) |
|
| 14 | simp2 | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> B e. X ) |
|
| 15 | simp3 | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) |
|
| 16 | sbcan | |- ( [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) <-> ( [. A / x ]. ( ph /\ [ y / x ] ph ) /\ [. A / x ]. x =/= y ) ) |
|
| 17 | sbcan | |- ( [. A / x ]. ( ph /\ [ y / x ] ph ) <-> ( [. A / x ]. ph /\ [. A / x ]. [ y / x ] ph ) ) |
|
| 18 | 1 | sbcieg | |- ( A e. X -> ( [. A / x ]. ph <-> ps ) ) |
| 19 | nfs1v | |- F/ x [ y / x ] ph |
|
| 20 | 19 | sbcgf | |- ( A e. X -> ( [. A / x ]. [ y / x ] ph <-> [ y / x ] ph ) ) |
| 21 | 18 20 | anbi12d | |- ( A e. X -> ( ( [. A / x ]. ph /\ [. A / x ]. [ y / x ] ph ) <-> ( ps /\ [ y / x ] ph ) ) ) |
| 22 | 17 21 | bitrid | |- ( A e. X -> ( [. A / x ]. ( ph /\ [ y / x ] ph ) <-> ( ps /\ [ y / x ] ph ) ) ) |
| 23 | sbcne12 | |- ( [. A / x ]. x =/= y <-> [_ A / x ]_ x =/= [_ A / x ]_ y ) |
|
| 24 | csbvarg | |- ( A e. X -> [_ A / x ]_ x = A ) |
|
| 25 | csbconstg | |- ( A e. X -> [_ A / x ]_ y = y ) |
|
| 26 | 24 25 | neeq12d | |- ( A e. X -> ( [_ A / x ]_ x =/= [_ A / x ]_ y <-> A =/= y ) ) |
| 27 | 23 26 | bitrid | |- ( A e. X -> ( [. A / x ]. x =/= y <-> A =/= y ) ) |
| 28 | 22 27 | anbi12d | |- ( A e. X -> ( ( [. A / x ]. ( ph /\ [ y / x ] ph ) /\ [. A / x ]. x =/= y ) <-> ( ( ps /\ [ y / x ] ph ) /\ A =/= y ) ) ) |
| 29 | 16 28 | bitrid | |- ( A e. X -> ( [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) <-> ( ( ps /\ [ y / x ] ph ) /\ A =/= y ) ) ) |
| 30 | 29 | 3ad2ant1 | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) <-> ( ( ps /\ [ y / x ] ph ) /\ A =/= y ) ) ) |
| 31 | 30 | sbcbidv | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [. B / y ]. [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) <-> [. B / y ]. ( ( ps /\ [ y / x ] ph ) /\ A =/= y ) ) ) |
| 32 | sbcan | |- ( [. B / y ]. ( ( ps /\ [ y / x ] ph ) /\ A =/= y ) <-> ( [. B / y ]. ( ps /\ [ y / x ] ph ) /\ [. B / y ]. A =/= y ) ) |
|
| 33 | sbcan | |- ( [. B / y ]. ( ps /\ [ y / x ] ph ) <-> ( [. B / y ]. ps /\ [. B / y ]. [ y / x ] ph ) ) |
|
| 34 | sbcg | |- ( B e. X -> ( [. B / y ]. ps <-> ps ) ) |
|
| 35 | sbsbc | |- ( [ y / x ] ph <-> [. y / x ]. ph ) |
|
| 36 | 35 | sbcbii | |- ( [. B / y ]. [ y / x ] ph <-> [. B / y ]. [. y / x ]. ph ) |
| 37 | sbccow | |- ( [. B / y ]. [. y / x ]. ph <-> [. B / x ]. ph ) |
|
| 38 | 37 | a1i | |- ( B e. X -> ( [. B / y ]. [. y / x ]. ph <-> [. B / x ]. ph ) ) |
| 39 | 36 38 | bitrid | |- ( B e. X -> ( [. B / y ]. [ y / x ] ph <-> [. B / x ]. ph ) ) |
| 40 | 34 39 | anbi12d | |- ( B e. X -> ( ( [. B / y ]. ps /\ [. B / y ]. [ y / x ] ph ) <-> ( ps /\ [. B / x ]. ph ) ) ) |
| 41 | 40 | 3ad2ant2 | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( ( [. B / y ]. ps /\ [. B / y ]. [ y / x ] ph ) <-> ( ps /\ [. B / x ]. ph ) ) ) |
| 42 | 33 41 | bitrid | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [. B / y ]. ( ps /\ [ y / x ] ph ) <-> ( ps /\ [. B / x ]. ph ) ) ) |
| 43 | sbcne12 | |- ( [. B / y ]. A =/= y <-> [_ B / y ]_ A =/= [_ B / y ]_ y ) |
|
| 44 | csbconstg | |- ( B e. X -> [_ B / y ]_ A = A ) |
|
| 45 | csbvarg | |- ( B e. X -> [_ B / y ]_ y = B ) |
|
| 46 | 44 45 | neeq12d | |- ( B e. X -> ( [_ B / y ]_ A =/= [_ B / y ]_ y <-> A =/= B ) ) |
| 47 | 46 | 3ad2ant2 | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [_ B / y ]_ A =/= [_ B / y ]_ y <-> A =/= B ) ) |
| 48 | 43 47 | bitrid | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [. B / y ]. A =/= y <-> A =/= B ) ) |
| 49 | 42 48 | anbi12d | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( ( [. B / y ]. ( ps /\ [ y / x ] ph ) /\ [. B / y ]. A =/= y ) <-> ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) ) |
| 50 | 32 49 | bitrid | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [. B / y ]. ( ( ps /\ [ y / x ] ph ) /\ A =/= y ) <-> ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) ) |
| 51 | 31 50 | bitrd | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> ( [. B / y ]. [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) <-> ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) ) |
| 52 | 15 51 | mpbird | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> [. B / y ]. [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
| 53 | rspesbca | |- ( ( B e. X /\ [. B / y ]. [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) -> E. y e. X [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
|
| 54 | 14 52 53 | syl2anc | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> E. y e. X [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
| 55 | sbcrex | |- ( [. A / x ]. E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) <-> E. y e. X [. A / x ]. ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
|
| 56 | 54 55 | sylibr | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> [. A / x ]. E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
| 57 | rspesbca | |- ( ( A e. X /\ [. A / x ]. E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) -> E. x e. X E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
|
| 58 | 13 56 57 | syl2anc | |- ( ( A e. X /\ B e. X /\ ( ( ps /\ [. B / x ]. ph ) /\ A =/= B ) ) -> E. x e. X E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
| 59 | 3 4 11 12 58 | syl112anc | |- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> E. x e. X E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
| 60 | pm4.61 | |- ( -. ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> ( ( ph /\ [ y / x ] ph ) /\ -. x = y ) ) |
|
| 61 | df-ne | |- ( x =/= y <-> -. x = y ) |
|
| 62 | 61 | bicomi | |- ( -. x = y <-> x =/= y ) |
| 63 | 62 | anbi2i | |- ( ( ( ph /\ [ y / x ] ph ) /\ -. x = y ) <-> ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
| 64 | 60 63 | bitri | |- ( -. ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
| 65 | 64 | 2rexbii | |- ( E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> E. x e. X E. y e. X ( ( ph /\ [ y / x ] ph ) /\ x =/= y ) ) |
| 66 | 59 65 | sylibr | |- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
| 67 | 66 | olcd | |- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> ( -. E. x e. X ph \/ E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
| 68 | ianor | |- ( -. ( E. x e. X ph /\ A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) ) <-> ( -. E. x e. X ph \/ -. A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
|
| 69 | rexnal2 | |- ( E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> -. A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
|
| 70 | 69 | bicomi | |- ( -. A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
| 71 | 70 | orbi2i | |- ( ( -. E. x e. X ph \/ -. A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) ) <-> ( -. E. x e. X ph \/ E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
| 72 | 68 71 | bitri | |- ( -. ( E. x e. X ph /\ A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) ) <-> ( -. E. x e. X ph \/ E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
| 73 | reu2 | |- ( E! x e. X ph <-> ( E. x e. X ph /\ A. x e. X A. y e. X ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
|
| 74 | 72 73 | xchnxbir | |- ( -. E! x e. X ph <-> ( -. E. x e. X ph \/ E. x e. X E. y e. X -. ( ( ph /\ [ y / x ] ph ) -> x = y ) ) ) |
| 75 | 67 74 | sylibr | |- ( ( ( A e. X /\ B e. X /\ A =/= B ) /\ ( ps /\ ch ) ) -> -. E! x e. X ph ) |
| 76 | 75 | ex | |- ( ( A e. X /\ B e. X /\ A =/= B ) -> ( ( ps /\ ch ) -> -. E! x e. X ph ) ) |