This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcne12 | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne | ⊢ ( ¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶 ) | |
| 2 | 1 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] ¬ 𝐵 ≠ 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ) |
| 3 | 2 | a1i | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ 𝐵 ≠ 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ) ) |
| 4 | sbcng | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ 𝐵 ≠ 𝐶 ↔ ¬ [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ) ) | |
| 5 | sbceqg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) | |
| 6 | nne | ⊢ ( ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 7 | 5 6 | bitr4di | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 8 | 3 4 7 | 3bitr3d | ⊢ ( 𝐴 ∈ V → ( ¬ [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ↔ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 9 | 8 | con4bid | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 10 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 → 𝐴 ∈ V ) | |
| 11 | 10 | con3i | ⊢ ( ¬ 𝐴 ∈ V → ¬ [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ) |
| 12 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) | |
| 13 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ∅ ) | |
| 14 | 12 13 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 15 | 14 6 | sylibr | ⊢ ( ¬ 𝐴 ∈ V → ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 16 | 11 15 | 2falsed | ⊢ ( ¬ 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 17 | 9 16 | pm2.61i | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |