This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016) (Revised by NM, 17-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcan | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ V ) | |
| 2 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝜓 → 𝐴 ∈ V ) | |
| 3 | 2 | adantl | ⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) → 𝐴 ∈ V ) |
| 4 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ) ) | |
| 5 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 6 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝐴 / 𝑥 ] 𝜓 ) ) | |
| 7 | 5 6 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
| 8 | sban | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 9 | 4 7 8 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
| 10 | 1 3 9 | pm5.21nii | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) ) |