This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf . (Contributed by Alan Sare, 10-Nov-2012) Reduce axiom usage. (Revised by GG, 12-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) | |
| 2 | dfclel | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) | |
| 3 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 4 | sbv | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) | |
| 5 | 3 4 | bitri | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
| 6 | 5 | anbi2i | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝑦 = 𝐴 ∧ 𝜑 ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) |
| 8 | 1 2 7 | 3bitrri | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 9 | dfclel | ⊢ ( 𝐴 ∈ 𝑉 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) ) | |
| 10 | 9 | biimpi | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) ) |
| 11 | simpr | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) | |
| 12 | 11 | ax-gen | ⊢ ∀ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) |
| 13 | 19.23v | ⊢ ( ∀ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) ↔ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) ) | |
| 14 | 13 | biimpi | ⊢ ( ∀ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) ) |
| 15 | 12 14 | mp1i | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) ) |
| 16 | 2a1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑉 → ( 𝜑 → 𝑦 = 𝐴 ) ) ) | |
| 17 | 16 | imp | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( 𝜑 → 𝑦 = 𝐴 ) ) |
| 18 | 17 | ancrd | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( 𝜑 → ( 𝑦 = 𝐴 ∧ 𝜑 ) ) ) |
| 19 | 18 | eximi | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ∃ 𝑦 ( 𝜑 → ( 𝑦 = 𝐴 ∧ 𝜑 ) ) ) |
| 20 | 19.37imv | ⊢ ( ∃ 𝑦 ( 𝜑 → ( 𝑦 = 𝐴 ∧ 𝜑 ) ) → ( 𝜑 → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( 𝜑 → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) ) |
| 22 | 15 21 | impbid | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ↔ 𝜑 ) ) |
| 23 | 10 22 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ↔ 𝜑 ) ) |
| 24 | 8 23 | bitr3id | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |