This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting a word two times resulting in the word itself. (Contributed by AV, 7-Apr-2018) (Revised by AV, 5-Jun-2018) (Revised by AV, 1-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2cshwid | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 2 | 1 | nn0zd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 3 | zsubcl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ∈ ℤ ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ∈ ℤ ) |
| 5 | 2cshw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = ( 𝑊 cyclShift ( 𝑁 + ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) ) ) | |
| 6 | 4 5 | mpd3an3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = ( 𝑊 cyclShift ( 𝑁 + ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) ) ) |
| 7 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 8 | 1 | nn0cnd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 9 | pncan3 | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( ♯ ‘ 𝑊 ) ∈ ℂ ) → ( 𝑁 + ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 10 | 7 8 9 | syl2anr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑁 + ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 11 | 10 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift ( 𝑁 + ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) ) = ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) ) |
| 12 | cshwn | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
| 14 | 6 11 13 | 3eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = 𝑊 ) |