This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law that swaps the last two terms in a triple sum, rearranging the parentheses. (Contributed by Paul Chapman, 18-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | add32r | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) ) | |
| 2 | add32 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) ) | |
| 3 | 1 2 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) ) |