This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The length of a cyclically shifted word is the same as the length of the original word. (Contributed by AV, 16-May-2018) (Revised by AV, 20-May-2018) (Revised by AV, 27-Oct-2018) (Proof shortened by AV, 16-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwlen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0csh0 | ⊢ ( ∅ cyclShift 𝑁 ) = ∅ | |
| 2 | oveq1 | ⊢ ( 𝑊 = ∅ → ( 𝑊 cyclShift 𝑁 ) = ( ∅ cyclShift 𝑁 ) ) | |
| 3 | id | ⊢ ( 𝑊 = ∅ → 𝑊 = ∅ ) | |
| 4 | 1 2 3 | 3eqtr4a | ⊢ ( 𝑊 = ∅ → ( 𝑊 cyclShift 𝑁 ) = 𝑊 ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑊 = ∅ → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 6 | 5 | a1d | ⊢ ( 𝑊 = ∅ → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) ) |
| 7 | cshword | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) | |
| 8 | 7 | fveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 10 | swrdcl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝑉 ) | |
| 11 | pfxcl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ∈ Word 𝑉 ) | |
| 12 | ccatlen | ⊢ ( ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝑉 ∧ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ∈ Word 𝑉 ) → ( ♯ ‘ ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 15 | lennncl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 16 | pm3.21 | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) ) | |
| 17 | 16 | ex | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( 𝑁 ∈ ℤ → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) ) ) |
| 18 | 15 17 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑁 ∈ ℤ → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) ) ) |
| 19 | 18 | ex | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ → ( 𝑁 ∈ ℤ → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) ) ) ) |
| 20 | 19 | com24 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉 → ( 𝑁 ∈ ℤ → ( 𝑊 ≠ ∅ → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) ) ) ) |
| 21 | 20 | pm2.43i | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑁 ∈ ℤ → ( 𝑊 ≠ ∅ → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) ) ) |
| 22 | 21 | imp31 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ∧ 𝑊 ≠ ∅ ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) |
| 23 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 24 | zmodfzp1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 25 | 24 | ancoms | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 27 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 28 | nn0fz0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 29 | 27 28 | sylib | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 31 | swrdlen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 32 | 23 26 30 31 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 33 | pfxlen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) | |
| 34 | 25 33 | sylan2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) |
| 35 | 32 34 | oveq12d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ( ( ♯ ‘ 𝑊 ) − ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) + ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 36 | 27 | nn0cnd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 37 | zmodcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ℕ0 ) | |
| 38 | 37 | nn0cnd | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ℂ ) |
| 39 | 38 | ancoms | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ℂ ) |
| 40 | npcan | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ℂ ) → ( ( ( ♯ ‘ 𝑊 ) − ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) + ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 41 | 36 39 40 | syl2an | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( ( ( ♯ ‘ 𝑊 ) − ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) + ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 42 | 35 41 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 43 | 22 42 | syl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 44 | 9 14 43 | 3eqtrd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 45 | 44 | expcom | ⊢ ( 𝑊 ≠ ∅ → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) ) |
| 46 | 6 45 | pm2.61ine | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |