This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting a word two times. (Contributed by AV, 7-Apr-2018) (Revised by AV, 4-Jun-2018) (Revised by AV, 31-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2cshw | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cshwlen | |- ( ( W e. Word V /\ M e. ZZ ) -> ( # ` ( W cyclShift M ) ) = ( # ` W ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( # ` ( W cyclShift M ) ) = ( # ` W ) ) |
| 3 | cshwcl | |- ( W e. Word V -> ( W cyclShift M ) e. Word V ) |
|
| 4 | cshwlen | |- ( ( ( W cyclShift M ) e. Word V /\ N e. ZZ ) -> ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift M ) ) ) |
|
| 5 | 3 4 | sylan | |- ( ( W e. Word V /\ N e. ZZ ) -> ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift M ) ) ) |
| 6 | 5 | 3adant2 | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift M ) ) ) |
| 7 | simp1 | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> W e. Word V ) |
|
| 8 | zaddcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
|
| 9 | 8 | 3adant1 | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
| 10 | cshwlen | |- ( ( W e. Word V /\ ( M + N ) e. ZZ ) -> ( # ` ( W cyclShift ( M + N ) ) ) = ( # ` W ) ) |
|
| 11 | 7 9 10 | syl2anc | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( # ` ( W cyclShift ( M + N ) ) ) = ( # ` W ) ) |
| 12 | 2 6 11 | 3eqtr4d | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift ( M + N ) ) ) ) |
| 13 | 6 2 | eqtrd | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` W ) ) |
| 14 | 13 | oveq2d | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 15 | 14 | eleq2d | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( i e. ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) <-> i e. ( 0 ..^ ( # ` W ) ) ) ) |
| 16 | 3 | 3ad2ant1 | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( W cyclShift M ) e. Word V ) |
| 17 | 16 | adantr | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W cyclShift M ) e. Word V ) |
| 18 | simpl3 | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> N e. ZZ ) |
|
| 19 | 2 | oveq2d | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( 0 ..^ ( # ` ( W cyclShift M ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 20 | 19 | eleq2d | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( i e. ( 0 ..^ ( # ` ( W cyclShift M ) ) ) <-> i e. ( 0 ..^ ( # ` W ) ) ) ) |
| 21 | 20 | biimpar | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` ( W cyclShift M ) ) ) ) |
| 22 | cshwidxmod | |- ( ( ( W cyclShift M ) e. Word V /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` ( W cyclShift M ) ) ) ) -> ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift M ) ` ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) ) ) |
|
| 23 | 17 18 21 22 | syl3anc | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift M ) ` ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) ) ) |
| 24 | simpl1 | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word V ) |
|
| 25 | simpl2 | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> M e. ZZ ) |
|
| 26 | elfzo0 | |- ( i e. ( 0 ..^ ( # ` W ) ) <-> ( i e. NN0 /\ ( # ` W ) e. NN /\ i < ( # ` W ) ) ) |
|
| 27 | nn0z | |- ( i e. NN0 -> i e. ZZ ) |
|
| 28 | 27 | ad2antrr | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) ) -> i e. ZZ ) |
| 29 | simpr3 | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) ) -> N e. ZZ ) |
|
| 30 | 28 29 | zaddcld | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) ) -> ( i + N ) e. ZZ ) |
| 31 | simplr | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) ) -> ( # ` W ) e. NN ) |
|
| 32 | 30 31 | jca | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) ) -> ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) ) |
| 33 | 32 | ex | |- ( ( i e. NN0 /\ ( # ` W ) e. NN ) -> ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
| 34 | 33 | 3adant3 | |- ( ( i e. NN0 /\ ( # ` W ) e. NN /\ i < ( # ` W ) ) -> ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
| 35 | 26 34 | sylbi | |- ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) ) ) |
| 36 | 35 | impcom | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) ) |
| 37 | zmodfzo | |- ( ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) -> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
|
| 38 | 36 37 | syl | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
| 39 | 1 | oveq2d | |- ( ( W e. Word V /\ M e. ZZ ) -> ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) = ( ( i + N ) mod ( # ` W ) ) ) |
| 40 | 39 | eleq1d | |- ( ( W e. Word V /\ M e. ZZ ) -> ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 41 | 40 | 3adant3 | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 42 | 41 | adantr | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 43 | 38 42 | mpbird | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) e. ( 0 ..^ ( # ` W ) ) ) |
| 44 | cshwidxmod | |- ( ( W e. Word V /\ M e. ZZ /\ ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift M ) ` ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) ) = ( W ` ( ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) + M ) mod ( # ` W ) ) ) ) |
|
| 45 | 24 25 43 44 | syl3anc | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift M ) ` ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) ) = ( W ` ( ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) + M ) mod ( # ` W ) ) ) ) |
| 46 | nn0re | |- ( i e. NN0 -> i e. RR ) |
|
| 47 | 46 | ad2antrr | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> i e. RR ) |
| 48 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 49 | 48 | ad2antll | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> N e. RR ) |
| 50 | 47 49 | readdcld | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( i + N ) e. RR ) |
| 51 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 52 | 51 | ad2antrl | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> M e. RR ) |
| 53 | nnrp | |- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
|
| 54 | 53 | ad2antlr | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( # ` W ) e. RR+ ) |
| 55 | modaddmod | |- ( ( ( i + N ) e. RR /\ M e. RR /\ ( # ` W ) e. RR+ ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( ( i + N ) + M ) mod ( # ` W ) ) ) |
|
| 56 | 50 52 54 55 | syl3anc | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( ( i + N ) + M ) mod ( # ` W ) ) ) |
| 57 | nn0cn | |- ( i e. NN0 -> i e. CC ) |
|
| 58 | 57 | ad2antrr | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> i e. CC ) |
| 59 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 60 | 59 | ad2antrl | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> M e. CC ) |
| 61 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 62 | 61 | ad2antll | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> N e. CC ) |
| 63 | add32r | |- ( ( i e. CC /\ M e. CC /\ N e. CC ) -> ( i + ( M + N ) ) = ( ( i + N ) + M ) ) |
|
| 64 | 58 60 62 63 | syl3anc | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( i + ( M + N ) ) = ( ( i + N ) + M ) ) |
| 65 | 64 | oveq1d | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( i + ( M + N ) ) mod ( # ` W ) ) = ( ( ( i + N ) + M ) mod ( # ` W ) ) ) |
| 66 | 56 65 | eqtr4d | |- ( ( ( i e. NN0 /\ ( # ` W ) e. NN ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( i + ( M + N ) ) mod ( # ` W ) ) ) |
| 67 | 66 | ex | |- ( ( i e. NN0 /\ ( # ` W ) e. NN ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( i + ( M + N ) ) mod ( # ` W ) ) ) ) |
| 68 | 67 | 3adant3 | |- ( ( i e. NN0 /\ ( # ` W ) e. NN /\ i < ( # ` W ) ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( i + ( M + N ) ) mod ( # ` W ) ) ) ) |
| 69 | 26 68 | sylbi | |- ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( i + ( M + N ) ) mod ( # ` W ) ) ) ) |
| 70 | 69 | impcom | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( i + ( M + N ) ) mod ( # ` W ) ) ) |
| 71 | 70 | 3adantl1 | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) = ( ( i + ( M + N ) ) mod ( # ` W ) ) ) |
| 72 | 71 | fveq2d | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) ) = ( W ` ( ( i + ( M + N ) ) mod ( # ` W ) ) ) ) |
| 73 | 2 | adantr | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` ( W cyclShift M ) ) = ( # ` W ) ) |
| 74 | 73 | oveq2d | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) = ( ( i + N ) mod ( # ` W ) ) ) |
| 75 | 74 | oveq1d | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) + M ) = ( ( ( i + N ) mod ( # ` W ) ) + M ) ) |
| 76 | 75 | fvoveq1d | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) + M ) mod ( # ` W ) ) ) = ( W ` ( ( ( ( i + N ) mod ( # ` W ) ) + M ) mod ( # ` W ) ) ) ) |
| 77 | 9 | adantr | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( M + N ) e. ZZ ) |
| 78 | simpr | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) |
|
| 79 | cshwidxmod | |- ( ( W e. Word V /\ ( M + N ) e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift ( M + N ) ) ` i ) = ( W ` ( ( i + ( M + N ) ) mod ( # ` W ) ) ) ) |
|
| 80 | 24 77 78 79 | syl3anc | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift ( M + N ) ) ` i ) = ( W ` ( ( i + ( M + N ) ) mod ( # ` W ) ) ) ) |
| 81 | 72 76 80 | 3eqtr4d | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( ( ( i + N ) mod ( # ` ( W cyclShift M ) ) ) + M ) mod ( # ` W ) ) ) = ( ( W cyclShift ( M + N ) ) ` i ) ) |
| 82 | 23 45 81 | 3eqtrd | |- ( ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) |
| 83 | 82 | ex | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( i e. ( 0 ..^ ( # ` W ) ) -> ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) ) |
| 84 | 15 83 | sylbid | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( i e. ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) -> ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) ) |
| 85 | 84 | ralrimiv | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> A. i e. ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) |
| 86 | cshwcl | |- ( ( W cyclShift M ) e. Word V -> ( ( W cyclShift M ) cyclShift N ) e. Word V ) |
|
| 87 | 3 86 | syl | |- ( W e. Word V -> ( ( W cyclShift M ) cyclShift N ) e. Word V ) |
| 88 | cshwcl | |- ( W e. Word V -> ( W cyclShift ( M + N ) ) e. Word V ) |
|
| 89 | eqwrd | |- ( ( ( ( W cyclShift M ) cyclShift N ) e. Word V /\ ( W cyclShift ( M + N ) ) e. Word V ) -> ( ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) <-> ( ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift ( M + N ) ) ) /\ A. i e. ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) ) ) |
|
| 90 | 87 88 89 | syl2anc | |- ( W e. Word V -> ( ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) <-> ( ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift ( M + N ) ) ) /\ A. i e. ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) ) ) |
| 91 | 90 | 3ad2ant1 | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) <-> ( ( # ` ( ( W cyclShift M ) cyclShift N ) ) = ( # ` ( W cyclShift ( M + N ) ) ) /\ A. i e. ( 0 ..^ ( # ` ( ( W cyclShift M ) cyclShift N ) ) ) ( ( ( W cyclShift M ) cyclShift N ) ` i ) = ( ( W cyclShift ( M + N ) ) ` i ) ) ) ) |
| 92 | 12 85 91 | mpbir2and | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) ) |