This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2atjm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2atjm.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| 2atjm.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| 2atjm.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| 2atjm.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | 2atjm | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) = 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2atjm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | 2atjm.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | 2atjm.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | 2atjm.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | 2atjm.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 6 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝐾 ∈ Lat ) |
| 8 | simp21 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ∈ 𝐴 ) | |
| 9 | 1 5 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 10 | 8 9 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ∈ 𝐵 ) |
| 11 | simp22 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑄 ∈ 𝐴 ) | |
| 12 | 1 5 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 13 | 11 12 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑄 ∈ 𝐵 ) |
| 14 | 1 2 3 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 15 | 7 10 13 14 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 16 | simp3l | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≤ 𝑋 ) | |
| 17 | simp1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝐾 ∈ HL ) | |
| 18 | 1 3 5 | hlatjcl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 19 | 17 8 11 18 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 20 | simp23 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑋 ∈ 𝐵 ) | |
| 21 | 1 2 4 | latlem12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≤ 𝑋 ) ↔ 𝑃 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) ) |
| 22 | 7 10 19 20 21 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≤ 𝑋 ) ↔ 𝑃 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) ) |
| 23 | 15 16 22 | mpbi2and | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) |
| 24 | hlatl | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) | |
| 25 | 24 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝐾 ∈ AtLat ) |
| 26 | 1 4 | latmcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) = ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ) |
| 27 | 7 19 20 26 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) = ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ) |
| 28 | 20 8 11 | 3jca | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
| 29 | nbrne2 | ⊢ ( ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) → 𝑃 ≠ 𝑄 ) | |
| 30 | 29 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≠ 𝑄 ) |
| 31 | simp3r | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ¬ 𝑄 ≤ 𝑋 ) | |
| 32 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 33 | 7 20 13 32 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 34 | 1 2 3 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 35 | 7 20 13 34 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 36 | 1 2 7 10 20 33 16 35 | lattrd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 37 | 1 2 3 4 5 | cvrat3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) |
| 38 | 37 | imp | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) |
| 39 | 17 28 30 31 36 38 | syl23anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) |
| 40 | 27 39 | eqeltrd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐴 ) |
| 41 | 2 5 | atcmp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐴 ) → ( 𝑃 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ↔ 𝑃 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) ) |
| 42 | 25 8 40 41 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑃 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ↔ 𝑃 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) ) |
| 43 | 23 42 | mpbid | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) |
| 44 | 43 | eqcomd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) = 𝑃 ) |