This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lattice ordering is transitive. Deduction version of lattr . (Contributed by NM, 3-Sep-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lattrd.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lattrd.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lattrd.1 | ⊢ ( 𝜑 → 𝐾 ∈ Lat ) | ||
| lattrd.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| lattrd.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| lattrd.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| lattrd.5 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| lattrd.6 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑍 ) | ||
| Assertion | lattrd | ⊢ ( 𝜑 → 𝑋 ≤ 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lattrd.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lattrd.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | lattrd.1 | ⊢ ( 𝜑 → 𝐾 ∈ Lat ) | |
| 4 | lattrd.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | lattrd.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | lattrd.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | lattrd.5 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 8 | lattrd.6 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑍 ) | |
| 9 | 1 2 | lattr | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) |
| 10 | 3 4 5 6 9 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) |
| 11 | 7 8 10 | mp2and | ⊢ ( 𝜑 → 𝑋 ≤ 𝑍 ) |