This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2atjm.b | |- B = ( Base ` K ) |
|
| 2atjm.l | |- .<_ = ( le ` K ) |
||
| 2atjm.j | |- .\/ = ( join ` K ) |
||
| 2atjm.m | |- ./\ = ( meet ` K ) |
||
| 2atjm.a | |- A = ( Atoms ` K ) |
||
| Assertion | 2atjm | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .\/ Q ) ./\ X ) = P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2atjm.b | |- B = ( Base ` K ) |
|
| 2 | 2atjm.l | |- .<_ = ( le ` K ) |
|
| 3 | 2atjm.j | |- .\/ = ( join ` K ) |
|
| 4 | 2atjm.m | |- ./\ = ( meet ` K ) |
|
| 5 | 2atjm.a | |- A = ( Atoms ` K ) |
|
| 6 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> K e. Lat ) |
| 8 | simp21 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> P e. A ) |
|
| 9 | 1 5 | atbase | |- ( P e. A -> P e. B ) |
| 10 | 8 9 | syl | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> P e. B ) |
| 11 | simp22 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> Q e. A ) |
|
| 12 | 1 5 | atbase | |- ( Q e. A -> Q e. B ) |
| 13 | 11 12 | syl | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> Q e. B ) |
| 14 | 1 2 3 | latlej1 | |- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> P .<_ ( P .\/ Q ) ) |
| 15 | 7 10 13 14 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> P .<_ ( P .\/ Q ) ) |
| 16 | simp3l | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> P .<_ X ) |
|
| 17 | simp1 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> K e. HL ) |
|
| 18 | 1 3 5 | hlatjcl | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. B ) |
| 19 | 17 8 11 18 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> ( P .\/ Q ) e. B ) |
| 20 | simp23 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> X e. B ) |
|
| 21 | 1 2 4 | latlem12 | |- ( ( K e. Lat /\ ( P e. B /\ ( P .\/ Q ) e. B /\ X e. B ) ) -> ( ( P .<_ ( P .\/ Q ) /\ P .<_ X ) <-> P .<_ ( ( P .\/ Q ) ./\ X ) ) ) |
| 22 | 7 10 19 20 21 | syl13anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .<_ ( P .\/ Q ) /\ P .<_ X ) <-> P .<_ ( ( P .\/ Q ) ./\ X ) ) ) |
| 23 | 15 16 22 | mpbi2and | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> P .<_ ( ( P .\/ Q ) ./\ X ) ) |
| 24 | hlatl | |- ( K e. HL -> K e. AtLat ) |
|
| 25 | 24 | 3ad2ant1 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> K e. AtLat ) |
| 26 | 1 4 | latmcom | |- ( ( K e. Lat /\ ( P .\/ Q ) e. B /\ X e. B ) -> ( ( P .\/ Q ) ./\ X ) = ( X ./\ ( P .\/ Q ) ) ) |
| 27 | 7 19 20 26 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .\/ Q ) ./\ X ) = ( X ./\ ( P .\/ Q ) ) ) |
| 28 | 20 8 11 | 3jca | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> ( X e. B /\ P e. A /\ Q e. A ) ) |
| 29 | nbrne2 | |- ( ( P .<_ X /\ -. Q .<_ X ) -> P =/= Q ) |
|
| 30 | 29 | 3ad2ant3 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> P =/= Q ) |
| 31 | simp3r | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> -. Q .<_ X ) |
|
| 32 | 1 3 | latjcl | |- ( ( K e. Lat /\ X e. B /\ Q e. B ) -> ( X .\/ Q ) e. B ) |
| 33 | 7 20 13 32 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> ( X .\/ Q ) e. B ) |
| 34 | 1 2 3 | latlej1 | |- ( ( K e. Lat /\ X e. B /\ Q e. B ) -> X .<_ ( X .\/ Q ) ) |
| 35 | 7 20 13 34 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> X .<_ ( X .\/ Q ) ) |
| 36 | 1 2 7 10 20 33 16 35 | lattrd | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> P .<_ ( X .\/ Q ) ) |
| 37 | 1 2 3 4 5 | cvrat3 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ./\ ( P .\/ Q ) ) e. A ) ) |
| 38 | 37 | imp | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( P =/= Q /\ -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) ) -> ( X ./\ ( P .\/ Q ) ) e. A ) |
| 39 | 17 28 30 31 36 38 | syl23anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> ( X ./\ ( P .\/ Q ) ) e. A ) |
| 40 | 27 39 | eqeltrd | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .\/ Q ) ./\ X ) e. A ) |
| 41 | 2 5 | atcmp | |- ( ( K e. AtLat /\ P e. A /\ ( ( P .\/ Q ) ./\ X ) e. A ) -> ( P .<_ ( ( P .\/ Q ) ./\ X ) <-> P = ( ( P .\/ Q ) ./\ X ) ) ) |
| 42 | 25 8 40 41 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> ( P .<_ ( ( P .\/ Q ) ./\ X ) <-> P = ( ( P .\/ Q ) ./\ X ) ) ) |
| 43 | 23 42 | mpbid | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> P = ( ( P .\/ Q ) ./\ X ) ) |
| 44 | 43 | eqcomd | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .\/ Q ) ./\ X ) = P ) |