This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two atoms are comparable, they are equal. ( atsseq analog.) (Contributed by NM, 13-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atcmp.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| atcmp.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atcmp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atcmp.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | atcmp.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 3 | atlpos | ⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 6 | 5 2 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 8 | 5 2 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 10 | eqid | ⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) | |
| 11 | 5 10 | atl0cl | ⊢ ( 𝐾 ∈ AtLat → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
| 13 | eqid | ⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) | |
| 14 | 10 13 2 | atcvr0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ) |
| 16 | 10 13 2 | atcvr0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ) → ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑄 ) |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑄 ) |
| 18 | 5 1 13 | cvrcmp | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ∧ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑄 ) ) → ( 𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄 ) ) |
| 19 | 4 7 9 12 15 17 18 | syl132anc | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄 ) ) |