This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a 3rd atom R on a line P .\/ Q intersecting element X at P . (Contributed by NM, 30-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atbtwn.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atbtwn.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| atbtwn.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| atbtwn.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atbtwn | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≠ 𝑃 ↔ ¬ 𝑅 ≤ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atbtwn.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atbtwn.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | atbtwn.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | atbtwn.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | simpl33 | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) | |
| 6 | simpr | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 ≤ 𝑋 ) | |
| 7 | simpl11 | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝐾 ∈ HL ) | |
| 8 | 7 | hllatd | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝐾 ∈ Lat ) |
| 9 | simpl2l | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 ∈ 𝐴 ) | |
| 10 | 1 4 | atbase | ⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵 ) |
| 11 | 9 10 | syl | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 ∈ 𝐵 ) |
| 12 | simpl1 | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) | |
| 13 | 1 3 4 | hlatjcl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 14 | 12 13 | syl | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 15 | simpl2r | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) | |
| 16 | eqid | ⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) | |
| 17 | 1 2 16 | latlem12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ 𝑋 ) ↔ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ) ) |
| 18 | 8 11 14 15 17 | syl13anc | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ 𝑋 ) ↔ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ) ) |
| 19 | 5 6 18 | mpbi2and | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ) |
| 20 | simpl12 | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑃 ∈ 𝐴 ) | |
| 21 | simpl13 | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑄 ∈ 𝐴 ) | |
| 22 | simpl31 | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑃 ≤ 𝑋 ) | |
| 23 | simpl32 | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → ¬ 𝑄 ≤ 𝑋 ) | |
| 24 | 1 2 3 16 4 | 2atjm | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) = 𝑃 ) |
| 25 | 7 20 21 15 22 23 24 | syl132anc | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) = 𝑃 ) |
| 26 | 19 25 | breqtrd | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 ≤ 𝑃 ) |
| 27 | hlatl | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) | |
| 28 | 7 27 | syl | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝐾 ∈ AtLat ) |
| 29 | 2 4 | atcmp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑅 ≤ 𝑃 ↔ 𝑅 = 𝑃 ) ) |
| 30 | 28 9 20 29 | syl3anc | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → ( 𝑅 ≤ 𝑃 ↔ 𝑅 = 𝑃 ) ) |
| 31 | 26 30 | mpbid | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 = 𝑃 ) |
| 32 | 31 | ex | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≤ 𝑋 → 𝑅 = 𝑃 ) ) |
| 33 | 32 | necon3ad | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≠ 𝑃 → ¬ 𝑅 ≤ 𝑋 ) ) |
| 34 | simp31 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≤ 𝑋 ) | |
| 35 | nbrne2 | ⊢ ( ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑅 ≤ 𝑋 ) → 𝑃 ≠ 𝑅 ) | |
| 36 | 35 | necomd | ⊢ ( ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑅 ≤ 𝑋 ) → 𝑅 ≠ 𝑃 ) |
| 37 | 36 | ex | ⊢ ( 𝑃 ≤ 𝑋 → ( ¬ 𝑅 ≤ 𝑋 → 𝑅 ≠ 𝑃 ) ) |
| 38 | 34 37 | syl | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ¬ 𝑅 ≤ 𝑋 → 𝑅 ≠ 𝑃 ) ) |
| 39 | 33 38 | impbid | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≠ 𝑃 ↔ ¬ 𝑅 ≤ 𝑋 ) ) |