This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of join operation. Frequently-used special case of latjcl for atoms. (Contributed by NM, 15-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlatjcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| hlatjcl.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| hlatjcl.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | hlatjcl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatjcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | hlatjcl.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | hlatjcl.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 5 | 1 3 | atbase | ⊢ ( 𝑋 ∈ 𝐴 → 𝑋 ∈ 𝐵 ) |
| 6 | 1 3 | atbase | ⊢ ( 𝑌 ∈ 𝐴 → 𝑌 ∈ 𝐵 ) |
| 7 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 8 | 4 5 6 7 | syl3an | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |