This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1loopgruspgr.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 1loopgruspgr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| 1loopgruspgr.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | ||
| 1loopgruspgr.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) | ||
| Assertion | 1loopgrnb0 | ⊢ ( 𝜑 → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1loopgruspgr.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 2 | 1loopgruspgr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 3 | 1loopgruspgr.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | |
| 4 | 1loopgruspgr.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) | |
| 5 | 1 2 3 4 | 1loopgruspgr | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 6 | uspgrupgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
| 8 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ↔ 𝑁 ∈ 𝑉 ) ) |
| 9 | 3 8 | mpbird | ⊢ ( 𝜑 → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 10 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 11 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 12 | 10 11 | nbupgr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) } ) |
| 13 | 7 9 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) } ) |
| 14 | 1 | difeq1d | ⊢ ( 𝜑 → ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) = ( 𝑉 ∖ { 𝑁 } ) ) |
| 15 | 14 | eleq2d | ⊢ ( 𝜑 → ( 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ↔ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) |
| 16 | eldifsn | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑁 ) ) | |
| 17 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) | |
| 19 | 17 18 | preqsnd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( { 𝑁 , 𝑣 } = { 𝑁 } ↔ ( 𝑁 = 𝑁 ∧ 𝑣 = 𝑁 ) ) ) |
| 20 | simpr | ⊢ ( ( 𝑁 = 𝑁 ∧ 𝑣 = 𝑁 ) → 𝑣 = 𝑁 ) | |
| 21 | 19 20 | biimtrdi | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( { 𝑁 , 𝑣 } = { 𝑁 } → 𝑣 = 𝑁 ) ) |
| 22 | 21 | necon3ad | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( 𝑣 ≠ 𝑁 → ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 23 | 22 | expimpd | ⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑁 ) → ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 24 | 16 23 | biimtrid | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 25 | 15 24 | sylbid | ⊢ ( 𝜑 → ( 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) → ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 26 | 25 | imp | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) |
| 27 | 1 2 3 4 | 1loopgredg | ⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = { { 𝑁 } } ) |
| 28 | 27 | eleq2d | ⊢ ( 𝜑 → ( { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑁 , 𝑣 } ∈ { { 𝑁 } } ) ) |
| 29 | prex | ⊢ { 𝑁 , 𝑣 } ∈ V | |
| 30 | 29 | elsn | ⊢ ( { 𝑁 , 𝑣 } ∈ { { 𝑁 } } ↔ { 𝑁 , 𝑣 } = { 𝑁 } ) |
| 31 | 28 30 | bitrdi | ⊢ ( 𝜑 → ( { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 32 | 31 | notbid | ⊢ ( 𝜑 → ( ¬ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ( ¬ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 34 | 26 33 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ¬ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) |
| 35 | 34 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ¬ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) |
| 36 | rabeq0 | ⊢ ( { 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) } = ∅ ↔ ∀ 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ¬ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) | |
| 37 | 35 36 | sylibr | ⊢ ( 𝜑 → { 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) } = ∅ ) |
| 38 | 13 37 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |