This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for a pair equal to a singleton, deduction form. (Contributed by Thierry Arnoux, 27-Dec-2016) (Revised by AV, 13-Jun-2022) (Revised by AV, 16-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preqsnd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| preqsnd.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| Assertion | preqsnd | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqsnd.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | preqsnd.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | 1 | adantl | ⊢ ( ( 𝐶 ∈ V ∧ 𝜑 ) → 𝐴 ∈ 𝑉 ) |
| 4 | 2 | adantl | ⊢ ( ( 𝐶 ∈ V ∧ 𝜑 ) → 𝐵 ∈ 𝑊 ) |
| 5 | simpl | ⊢ ( ( 𝐶 ∈ V ∧ 𝜑 ) → 𝐶 ∈ V ) | |
| 6 | dfsn2 | ⊢ { 𝐶 } = { 𝐶 , 𝐶 } | |
| 7 | 6 | eqeq2i | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ { 𝐴 , 𝐵 } = { 𝐶 , 𝐶 } ) |
| 8 | preq12bg | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐶 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) ) | |
| 9 | oridm | ⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) | |
| 10 | 8 9 | bitrdi | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| 11 | 7 10 | bitrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| 12 | 3 4 5 5 11 | syl22anc | ⊢ ( ( 𝐶 ∈ V ∧ 𝜑 ) → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| 13 | snprc | ⊢ ( ¬ 𝐶 ∈ V ↔ { 𝐶 } = ∅ ) | |
| 14 | 13 | biimpi | ⊢ ( ¬ 𝐶 ∈ V → { 𝐶 } = ∅ ) |
| 15 | 14 | adantr | ⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → { 𝐶 } = ∅ ) |
| 16 | 15 | eqeq2d | ⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ { 𝐴 , 𝐵 } = ∅ ) ) |
| 17 | prnzg | ⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 , 𝐵 } ≠ ∅ ) | |
| 18 | eqneqall | ⊢ ( { 𝐴 , 𝐵 } = ∅ → ( { 𝐴 , 𝐵 } ≠ ∅ → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) | |
| 19 | 17 18 | syl5com | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 , 𝐵 } = ∅ → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| 20 | 1 19 | syl | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } = ∅ → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → ( { 𝐴 , 𝐵 } = ∅ → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| 22 | 16 21 | sylbid | ⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → ( { 𝐴 , 𝐵 } = { 𝐶 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| 23 | eleq1 | ⊢ ( 𝐶 = 𝐴 → ( 𝐶 ∈ V ↔ 𝐴 ∈ V ) ) | |
| 24 | 23 | eqcoms | ⊢ ( 𝐴 = 𝐶 → ( 𝐶 ∈ V ↔ 𝐴 ∈ V ) ) |
| 25 | 24 | notbid | ⊢ ( 𝐴 = 𝐶 → ( ¬ 𝐶 ∈ V ↔ ¬ 𝐴 ∈ V ) ) |
| 26 | pm2.24 | ⊢ ( 𝐴 ∈ V → ( ¬ 𝐴 ∈ V → ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 } ) ) ) | |
| 27 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 28 | 26 27 | syl11 | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ∈ 𝑉 → ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 } ) ) ) |
| 29 | 25 28 | biimtrdi | ⊢ ( 𝐴 = 𝐶 → ( ¬ 𝐶 ∈ V → ( 𝐴 ∈ 𝑉 → ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 } ) ) ) ) |
| 30 | 29 | com13 | ⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐶 ∈ V → ( 𝐴 = 𝐶 → ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 } ) ) ) ) |
| 31 | 1 30 | syl | ⊢ ( 𝜑 → ( ¬ 𝐶 ∈ V → ( 𝐴 = 𝐶 → ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 } ) ) ) ) |
| 32 | 31 | impcom | ⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → ( 𝐴 = 𝐶 → ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 } ) ) ) |
| 33 | 32 | impd | ⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 } ) ) |
| 34 | 22 33 | impbid | ⊢ ( ( ¬ 𝐶 ∈ V ∧ 𝜑 ) → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |
| 35 | 12 34 | pm2.61ian | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } = { 𝐶 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) ) |