This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of neighbors of a vertex in a pseudograph. (Contributed by AV, 5-Nov-2020) (Proof shortened by AV, 30-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbuhgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbuhgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | nbupgr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbuhgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbuhgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | nbgrval | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
| 5 | simp-4l | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ { 𝑁 , 𝑛 } ⊆ 𝑒 ) → 𝐺 ∈ UPGraph ) | |
| 6 | simpr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝐸 ) | |
| 7 | 6 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ { 𝑁 , 𝑛 } ⊆ 𝑒 ) → 𝑒 ∈ 𝐸 ) |
| 8 | simpr | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ { 𝑁 , 𝑛 } ⊆ 𝑒 ) → { 𝑁 , 𝑛 } ⊆ 𝑒 ) | |
| 9 | simpr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) | |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑁 ∈ 𝑉 ) |
| 11 | vex | ⊢ 𝑛 ∈ V | |
| 12 | 11 | a1i | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑛 ∈ V ) |
| 13 | eldifsn | ⊢ ( 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑁 ) ) | |
| 14 | simpr | ⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑁 ) → 𝑛 ≠ 𝑁 ) | |
| 15 | 14 | necomd | ⊢ ( ( 𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑁 ) → 𝑁 ≠ 𝑛 ) |
| 16 | 13 15 | sylbi | ⊢ ( 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑁 ≠ 𝑛 ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑁 ≠ 𝑛 ) |
| 18 | 10 12 17 | 3jca | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ V ∧ 𝑁 ≠ 𝑛 ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ V ∧ 𝑁 ≠ 𝑛 ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ { 𝑁 , 𝑛 } ⊆ 𝑒 ) → ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ V ∧ 𝑁 ≠ 𝑛 ) ) |
| 21 | 1 2 | upgredgpr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑒 ∈ 𝐸 ∧ { 𝑁 , 𝑛 } ⊆ 𝑒 ) ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑛 ∈ V ∧ 𝑁 ≠ 𝑛 ) ) → { 𝑁 , 𝑛 } = 𝑒 ) |
| 22 | 5 7 8 20 21 | syl31anc | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ { 𝑁 , 𝑛 } ⊆ 𝑒 ) → { 𝑁 , 𝑛 } = 𝑒 ) |
| 23 | 22 | ex | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 → { 𝑁 , 𝑛 } = 𝑒 ) ) |
| 24 | eleq1 | ⊢ ( { 𝑁 , 𝑛 } = 𝑒 → ( { 𝑁 , 𝑛 } ∈ 𝐸 ↔ 𝑒 ∈ 𝐸 ) ) | |
| 25 | 24 | biimprd | ⊢ ( { 𝑁 , 𝑛 } = 𝑒 → ( 𝑒 ∈ 𝐸 → { 𝑁 , 𝑛 } ∈ 𝐸 ) ) |
| 26 | 23 6 25 | syl6ci | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ 𝑒 ∈ 𝐸 ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 → { 𝑁 , 𝑛 } ∈ 𝐸 ) ) |
| 27 | 26 | rexlimdva | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 → { 𝑁 , 𝑛 } ∈ 𝐸 ) ) |
| 28 | simpr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ { 𝑁 , 𝑛 } ∈ 𝐸 ) → { 𝑁 , 𝑛 } ∈ 𝐸 ) | |
| 29 | sseq2 | ⊢ ( 𝑒 = { 𝑁 , 𝑛 } → ( { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ { 𝑁 , 𝑛 } ⊆ { 𝑁 , 𝑛 } ) ) | |
| 30 | 29 | adantl | ⊢ ( ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ { 𝑁 , 𝑛 } ∈ 𝐸 ) ∧ 𝑒 = { 𝑁 , 𝑛 } ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ { 𝑁 , 𝑛 } ⊆ { 𝑁 , 𝑛 } ) ) |
| 31 | ssidd | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ { 𝑁 , 𝑛 } ∈ 𝐸 ) → { 𝑁 , 𝑛 } ⊆ { 𝑁 , 𝑛 } ) | |
| 32 | 28 30 31 | rspcedvd | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ { 𝑁 , 𝑛 } ∈ 𝐸 ) → ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ) |
| 33 | 32 | ex | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( { 𝑁 , 𝑛 } ∈ 𝐸 → ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ) ) |
| 34 | 27 33 | impbid | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ { 𝑁 , 𝑛 } ∈ 𝐸 ) ) |
| 35 | 34 | rabbidva | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
| 36 | 4 35 | eqtrd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |