This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1loopgruspgr.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 1loopgruspgr.a | |- ( ph -> A e. X ) |
||
| 1loopgruspgr.n | |- ( ph -> N e. V ) |
||
| 1loopgruspgr.i | |- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) |
||
| Assertion | 1loopgrnb0 | |- ( ph -> ( G NeighbVtx N ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1loopgruspgr.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 2 | 1loopgruspgr.a | |- ( ph -> A e. X ) |
|
| 3 | 1loopgruspgr.n | |- ( ph -> N e. V ) |
|
| 4 | 1loopgruspgr.i | |- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) |
|
| 5 | 1 2 3 4 | 1loopgruspgr | |- ( ph -> G e. USPGraph ) |
| 6 | uspgrupgr | |- ( G e. USPGraph -> G e. UPGraph ) |
|
| 7 | 5 6 | syl | |- ( ph -> G e. UPGraph ) |
| 8 | 1 | eleq2d | |- ( ph -> ( N e. ( Vtx ` G ) <-> N e. V ) ) |
| 9 | 3 8 | mpbird | |- ( ph -> N e. ( Vtx ` G ) ) |
| 10 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 11 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 12 | 10 11 | nbupgr | |- ( ( G e. UPGraph /\ N e. ( Vtx ` G ) ) -> ( G NeighbVtx N ) = { v e. ( ( Vtx ` G ) \ { N } ) | { N , v } e. ( Edg ` G ) } ) |
| 13 | 7 9 12 | syl2anc | |- ( ph -> ( G NeighbVtx N ) = { v e. ( ( Vtx ` G ) \ { N } ) | { N , v } e. ( Edg ` G ) } ) |
| 14 | 1 | difeq1d | |- ( ph -> ( ( Vtx ` G ) \ { N } ) = ( V \ { N } ) ) |
| 15 | 14 | eleq2d | |- ( ph -> ( v e. ( ( Vtx ` G ) \ { N } ) <-> v e. ( V \ { N } ) ) ) |
| 16 | eldifsn | |- ( v e. ( V \ { N } ) <-> ( v e. V /\ v =/= N ) ) |
|
| 17 | 3 | adantr | |- ( ( ph /\ v e. V ) -> N e. V ) |
| 18 | simpr | |- ( ( ph /\ v e. V ) -> v e. V ) |
|
| 19 | 17 18 | preqsnd | |- ( ( ph /\ v e. V ) -> ( { N , v } = { N } <-> ( N = N /\ v = N ) ) ) |
| 20 | simpr | |- ( ( N = N /\ v = N ) -> v = N ) |
|
| 21 | 19 20 | biimtrdi | |- ( ( ph /\ v e. V ) -> ( { N , v } = { N } -> v = N ) ) |
| 22 | 21 | necon3ad | |- ( ( ph /\ v e. V ) -> ( v =/= N -> -. { N , v } = { N } ) ) |
| 23 | 22 | expimpd | |- ( ph -> ( ( v e. V /\ v =/= N ) -> -. { N , v } = { N } ) ) |
| 24 | 16 23 | biimtrid | |- ( ph -> ( v e. ( V \ { N } ) -> -. { N , v } = { N } ) ) |
| 25 | 15 24 | sylbid | |- ( ph -> ( v e. ( ( Vtx ` G ) \ { N } ) -> -. { N , v } = { N } ) ) |
| 26 | 25 | imp | |- ( ( ph /\ v e. ( ( Vtx ` G ) \ { N } ) ) -> -. { N , v } = { N } ) |
| 27 | 1 2 3 4 | 1loopgredg | |- ( ph -> ( Edg ` G ) = { { N } } ) |
| 28 | 27 | eleq2d | |- ( ph -> ( { N , v } e. ( Edg ` G ) <-> { N , v } e. { { N } } ) ) |
| 29 | prex | |- { N , v } e. _V |
|
| 30 | 29 | elsn | |- ( { N , v } e. { { N } } <-> { N , v } = { N } ) |
| 31 | 28 30 | bitrdi | |- ( ph -> ( { N , v } e. ( Edg ` G ) <-> { N , v } = { N } ) ) |
| 32 | 31 | notbid | |- ( ph -> ( -. { N , v } e. ( Edg ` G ) <-> -. { N , v } = { N } ) ) |
| 33 | 32 | adantr | |- ( ( ph /\ v e. ( ( Vtx ` G ) \ { N } ) ) -> ( -. { N , v } e. ( Edg ` G ) <-> -. { N , v } = { N } ) ) |
| 34 | 26 33 | mpbird | |- ( ( ph /\ v e. ( ( Vtx ` G ) \ { N } ) ) -> -. { N , v } e. ( Edg ` G ) ) |
| 35 | 34 | ralrimiva | |- ( ph -> A. v e. ( ( Vtx ` G ) \ { N } ) -. { N , v } e. ( Edg ` G ) ) |
| 36 | rabeq0 | |- ( { v e. ( ( Vtx ` G ) \ { N } ) | { N , v } e. ( Edg ` G ) } = (/) <-> A. v e. ( ( Vtx ` G ) \ { N } ) -. { N , v } e. ( Edg ` G ) ) |
|
| 37 | 35 36 | sylibr | |- ( ph -> { v e. ( ( Vtx ` G ) \ { N } ) | { N , v } e. ( Edg ` G ) } = (/) ) |
| 38 | 13 37 | eqtrd | |- ( ph -> ( G NeighbVtx N ) = (/) ) |