This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 01sqrexlem1.1 | ⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } | |
| 01sqrexlem1.2 | ⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) | ||
| Assertion | 01sqrexlem4 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 01sqrexlem1.1 | ⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } | |
| 2 | 01sqrexlem1.2 | ⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) | |
| 3 | 1 2 | 01sqrexlem3 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑦 ) ) |
| 4 | suprcl | ⊢ ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑦 ) → sup ( 𝑆 , ℝ , < ) ∈ ℝ ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → sup ( 𝑆 , ℝ , < ) ∈ ℝ ) |
| 6 | 2 5 | eqeltrid | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐵 ∈ ℝ ) |
| 7 | rpgt0 | ⊢ ( 𝐴 ∈ ℝ+ → 0 < 𝐴 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 0 < 𝐴 ) |
| 9 | 1 2 | 01sqrexlem2 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ∈ 𝑆 ) |
| 10 | suprub | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ) | |
| 11 | 3 9 10 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ) |
| 12 | 11 2 | breqtrrdi | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ≤ 𝐵 ) |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 15 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 < 𝐵 ) ) | |
| 16 | 13 14 6 15 | mp3an2ani | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 0 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 < 𝐵 ) ) |
| 17 | 8 12 16 | mp2and | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 0 < 𝐵 ) |
| 18 | 6 17 | elrpd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐵 ∈ ℝ+ ) |
| 19 | 1 2 | 01sqrexlem1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 1 ) |
| 20 | 1re | ⊢ 1 ∈ ℝ | |
| 21 | suprleub | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑦 ) ∧ 1 ∈ ℝ ) → ( sup ( 𝑆 , ℝ , < ) ≤ 1 ↔ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 1 ) ) | |
| 22 | 3 20 21 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( sup ( 𝑆 , ℝ , < ) ≤ 1 ↔ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 1 ) ) |
| 23 | 19 22 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → sup ( 𝑆 , ℝ , < ) ≤ 1 ) |
| 24 | 2 23 | eqbrtrid | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐵 ≤ 1 ) |
| 25 | 18 24 | jca | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1 ) ) |