This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 01sqrexlem1.1 | |- S = { x e. RR+ | ( x ^ 2 ) <_ A } |
|
| 01sqrexlem1.2 | |- B = sup ( S , RR , < ) |
||
| Assertion | 01sqrexlem4 | |- ( ( A e. RR+ /\ A <_ 1 ) -> ( B e. RR+ /\ B <_ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 01sqrexlem1.1 | |- S = { x e. RR+ | ( x ^ 2 ) <_ A } |
|
| 2 | 01sqrexlem1.2 | |- B = sup ( S , RR , < ) |
|
| 3 | 1 2 | 01sqrexlem3 | |- ( ( A e. RR+ /\ A <_ 1 ) -> ( S C_ RR /\ S =/= (/) /\ E. y e. RR A. z e. S z <_ y ) ) |
| 4 | suprcl | |- ( ( S C_ RR /\ S =/= (/) /\ E. y e. RR A. z e. S z <_ y ) -> sup ( S , RR , < ) e. RR ) |
|
| 5 | 3 4 | syl | |- ( ( A e. RR+ /\ A <_ 1 ) -> sup ( S , RR , < ) e. RR ) |
| 6 | 2 5 | eqeltrid | |- ( ( A e. RR+ /\ A <_ 1 ) -> B e. RR ) |
| 7 | rpgt0 | |- ( A e. RR+ -> 0 < A ) |
|
| 8 | 7 | adantr | |- ( ( A e. RR+ /\ A <_ 1 ) -> 0 < A ) |
| 9 | 1 2 | 01sqrexlem2 | |- ( ( A e. RR+ /\ A <_ 1 ) -> A e. S ) |
| 10 | suprub | |- ( ( ( S C_ RR /\ S =/= (/) /\ E. y e. RR A. z e. S z <_ y ) /\ A e. S ) -> A <_ sup ( S , RR , < ) ) |
|
| 11 | 3 9 10 | syl2anc | |- ( ( A e. RR+ /\ A <_ 1 ) -> A <_ sup ( S , RR , < ) ) |
| 12 | 11 2 | breqtrrdi | |- ( ( A e. RR+ /\ A <_ 1 ) -> A <_ B ) |
| 13 | 0re | |- 0 e. RR |
|
| 14 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 15 | ltletr | |- ( ( 0 e. RR /\ A e. RR /\ B e. RR ) -> ( ( 0 < A /\ A <_ B ) -> 0 < B ) ) |
|
| 16 | 13 14 6 15 | mp3an2ani | |- ( ( A e. RR+ /\ A <_ 1 ) -> ( ( 0 < A /\ A <_ B ) -> 0 < B ) ) |
| 17 | 8 12 16 | mp2and | |- ( ( A e. RR+ /\ A <_ 1 ) -> 0 < B ) |
| 18 | 6 17 | elrpd | |- ( ( A e. RR+ /\ A <_ 1 ) -> B e. RR+ ) |
| 19 | 1 2 | 01sqrexlem1 | |- ( ( A e. RR+ /\ A <_ 1 ) -> A. z e. S z <_ 1 ) |
| 20 | 1re | |- 1 e. RR |
|
| 21 | suprleub | |- ( ( ( S C_ RR /\ S =/= (/) /\ E. y e. RR A. z e. S z <_ y ) /\ 1 e. RR ) -> ( sup ( S , RR , < ) <_ 1 <-> A. z e. S z <_ 1 ) ) |
|
| 22 | 3 20 21 | sylancl | |- ( ( A e. RR+ /\ A <_ 1 ) -> ( sup ( S , RR , < ) <_ 1 <-> A. z e. S z <_ 1 ) ) |
| 23 | 19 22 | mpbird | |- ( ( A e. RR+ /\ A <_ 1 ) -> sup ( S , RR , < ) <_ 1 ) |
| 24 | 2 23 | eqbrtrid | |- ( ( A e. RR+ /\ A <_ 1 ) -> B <_ 1 ) |
| 25 | 18 24 | jca | |- ( ( A e. RR+ /\ A <_ 1 ) -> ( B e. RR+ /\ B <_ 1 ) ) |