This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 01sqrexlem1.1 | ⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } | |
| 01sqrexlem1.2 | ⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) | ||
| Assertion | 01sqrexlem1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 01sqrexlem1.1 | ⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } | |
| 2 | 01sqrexlem1.2 | ⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) | |
| 3 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) | |
| 4 | 3 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 2 ) ≤ 𝐴 ↔ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) |
| 5 | 4 1 | elrab2 | ⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) |
| 6 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) → ( 𝑦 ↑ 2 ) ≤ 𝐴 ) | |
| 7 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) → 𝐴 ≤ 1 ) | |
| 8 | rpre | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) | |
| 9 | 8 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) → 𝑦 ∈ ℝ ) |
| 10 | 9 | resqcld | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) → ( 𝑦 ↑ 2 ) ∈ ℝ ) |
| 11 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) → 𝐴 ∈ ℝ ) |
| 13 | 1re | ⊢ 1 ∈ ℝ | |
| 14 | letr | ⊢ ( ( ( 𝑦 ↑ 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( 𝑦 ↑ 2 ) ≤ 𝐴 ∧ 𝐴 ≤ 1 ) → ( 𝑦 ↑ 2 ) ≤ 1 ) ) | |
| 15 | 13 14 | mp3an3 | ⊢ ( ( ( 𝑦 ↑ 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ( 𝑦 ↑ 2 ) ≤ 𝐴 ∧ 𝐴 ≤ 1 ) → ( 𝑦 ↑ 2 ) ≤ 1 ) ) |
| 16 | 10 12 15 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) → ( ( ( 𝑦 ↑ 2 ) ≤ 𝐴 ∧ 𝐴 ≤ 1 ) → ( 𝑦 ↑ 2 ) ≤ 1 ) ) |
| 17 | 6 7 16 | mp2and | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) → ( 𝑦 ↑ 2 ) ≤ 1 ) |
| 18 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 19 | 17 18 | breqtrrdi | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) → ( 𝑦 ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
| 20 | rpge0 | ⊢ ( 𝑦 ∈ ℝ+ → 0 ≤ 𝑦 ) | |
| 21 | 20 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) → 0 ≤ 𝑦 ) |
| 22 | 0le1 | ⊢ 0 ≤ 1 | |
| 23 | le2sq | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( 𝑦 ≤ 1 ↔ ( 𝑦 ↑ 2 ) ≤ ( 1 ↑ 2 ) ) ) | |
| 24 | 13 22 23 | mpanr12 | ⊢ ( ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) → ( 𝑦 ≤ 1 ↔ ( 𝑦 ↑ 2 ) ≤ ( 1 ↑ 2 ) ) ) |
| 25 | 9 21 24 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) → ( 𝑦 ≤ 1 ↔ ( 𝑦 ↑ 2 ) ≤ ( 1 ↑ 2 ) ) ) |
| 26 | 19 25 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) ) → 𝑦 ≤ 1 ) |
| 27 | 26 | ex | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑦 ↑ 2 ) ≤ 𝐴 ) → 𝑦 ≤ 1 ) ) |
| 28 | 5 27 | biimtrid | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑦 ∈ 𝑆 → 𝑦 ≤ 1 ) ) |
| 29 | 28 | ralrimiv | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 1 ) |