This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 01sqrexlem1.1 | ⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } | |
| 01sqrexlem1.2 | ⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) | ||
| 01sqrexlem5.3 | ⊢ 𝑇 = { 𝑦 ∣ ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑦 = ( 𝑎 · 𝑏 ) } | ||
| Assertion | 01sqrexlem5 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ∧ ( 𝐵 ↑ 2 ) = sup ( 𝑇 , ℝ , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 01sqrexlem1.1 | ⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } | |
| 2 | 01sqrexlem1.2 | ⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) | |
| 3 | 01sqrexlem5.3 | ⊢ 𝑇 = { 𝑦 ∣ ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑦 = ( 𝑎 · 𝑏 ) } | |
| 4 | 1 | ssrab3 | ⊢ 𝑆 ⊆ ℝ+ |
| 5 | 4 | sseli | ⊢ ( 𝑣 ∈ 𝑆 → 𝑣 ∈ ℝ+ ) |
| 6 | 5 | rpge0d | ⊢ ( 𝑣 ∈ 𝑆 → 0 ≤ 𝑣 ) |
| 7 | 6 | rgen | ⊢ ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 |
| 8 | 1 2 | 01sqrexlem3 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ) |
| 9 | pm4.24 | ⊢ ( ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ↔ ( ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ) ) | |
| 10 | 9 | 3anbi1i | ⊢ ( ( ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ) ↔ ( ( ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ) ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ) ) |
| 11 | 3 10 | supmullem2 | ⊢ ( ( ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ) → ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ) |
| 12 | 7 8 8 11 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ) |
| 13 | 1 2 | 01sqrexlem4 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1 ) ) |
| 14 | rpre | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1 ) → 𝐵 ∈ ℝ ) |
| 16 | 13 15 | syl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐵 ∈ ℝ ) |
| 17 | 16 | recnd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐵 ∈ ℂ ) |
| 18 | 17 | sqvald | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
| 19 | 2 2 | oveq12i | ⊢ ( 𝐵 · 𝐵 ) = ( sup ( 𝑆 , ℝ , < ) · sup ( 𝑆 , ℝ , < ) ) |
| 20 | 3 10 | supmul | ⊢ ( ( ∀ 𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ∧ ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑣 ) ) → ( sup ( 𝑆 , ℝ , < ) · sup ( 𝑆 , ℝ , < ) ) = sup ( 𝑇 , ℝ , < ) ) |
| 21 | 7 8 8 20 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( sup ( 𝑆 , ℝ , < ) · sup ( 𝑆 , ℝ , < ) ) = sup ( 𝑇 , ℝ , < ) ) |
| 22 | 19 21 | eqtrid | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 · 𝐵 ) = sup ( 𝑇 , ℝ , < ) ) |
| 23 | 18 22 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ↑ 2 ) = sup ( 𝑇 , ℝ , < ) ) |
| 24 | 12 23 | jca | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ∧ ( 𝐵 ↑ 2 ) = sup ( 𝑇 , ℝ , < ) ) ) |