This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 01sqrexlem1.1 | ⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } | |
| 01sqrexlem1.2 | ⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) | ||
| Assertion | 01sqrexlem3 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 01sqrexlem1.1 | ⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } | |
| 2 | 01sqrexlem1.2 | ⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) | |
| 3 | ssrab2 | ⊢ { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } ⊆ ℝ+ | |
| 4 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 5 | 3 4 | sstri | ⊢ { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } ⊆ ℝ |
| 6 | 1 5 | eqsstri | ⊢ 𝑆 ⊆ ℝ |
| 7 | 6 | a1i | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝑆 ⊆ ℝ ) |
| 8 | 1 2 | 01sqrexlem2 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ∈ 𝑆 ) |
| 9 | 8 | ne0d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝑆 ≠ ∅ ) |
| 10 | 1re | ⊢ 1 ∈ ℝ | |
| 11 | 1 2 | 01sqrexlem1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 1 ) |
| 12 | brralrspcev | ⊢ ( ( 1 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 1 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ) |
| 14 | 7 9 13 | 3jca | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ) ) |