This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 01sqrexlem1.1 | ⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } | |
| 01sqrexlem1.2 | ⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) | ||
| Assertion | 01sqrexlem2 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 01sqrexlem1.1 | ⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } | |
| 2 | 01sqrexlem1.2 | ⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) | |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ∈ ℝ+ ) | |
| 4 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 5 | rpgt0 | ⊢ ( 𝐴 ∈ ℝ+ → 0 < 𝐴 ) | |
| 6 | 1re | ⊢ 1 ∈ ℝ | |
| 7 | lemul1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐴 ≤ 1 ↔ ( 𝐴 · 𝐴 ) ≤ ( 1 · 𝐴 ) ) ) | |
| 8 | 6 7 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐴 ≤ 1 ↔ ( 𝐴 · 𝐴 ) ≤ ( 1 · 𝐴 ) ) ) |
| 9 | 4 4 5 8 | syl12anc | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ≤ 1 ↔ ( 𝐴 · 𝐴 ) ≤ ( 1 · 𝐴 ) ) ) |
| 10 | 9 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐴 · 𝐴 ) ≤ ( 1 · 𝐴 ) ) |
| 11 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ∈ ℂ ) |
| 13 | sqval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) | |
| 14 | 13 | eqcomd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 𝐴 ) = ( 𝐴 ↑ 2 ) ) |
| 15 | 12 14 | syl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐴 · 𝐴 ) = ( 𝐴 ↑ 2 ) ) |
| 16 | 11 | mullidd | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 · 𝐴 ) = 𝐴 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 18 | 10 15 17 | 3brtr3d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐴 ↑ 2 ) ≤ 𝐴 ) |
| 19 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 20 | 19 | breq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ↑ 2 ) ≤ 𝐴 ↔ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) ) |
| 21 | 20 1 | elrab2 | ⊢ ( 𝐴 ∈ 𝑆 ↔ ( 𝐴 ∈ ℝ+ ∧ ( 𝐴 ↑ 2 ) ≤ 𝐴 ) ) |
| 22 | 3 18 21 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ∈ 𝑆 ) |