This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 1 0 ^ 1 + 9 / 1 0 ^ 2 + 9 / 1 0 ^ 3 + ... , is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007) (Revised by AV, 8-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0.999... | ⊢ Σ 𝑘 ∈ ℕ ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn | ⊢ 9 ∈ ℂ | |
| 2 | 10re | ⊢ ; 1 0 ∈ ℝ | |
| 3 | 2 | recni | ⊢ ; 1 0 ∈ ℂ |
| 4 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 5 | expcl | ⊢ ( ( ; 1 0 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ; 1 0 ↑ 𝑘 ) ∈ ℂ ) | |
| 6 | 3 4 5 | sylancr | ⊢ ( 𝑘 ∈ ℕ → ( ; 1 0 ↑ 𝑘 ) ∈ ℂ ) |
| 7 | 3 | a1i | ⊢ ( 𝑘 ∈ ℕ → ; 1 0 ∈ ℂ ) |
| 8 | 10pos | ⊢ 0 < ; 1 0 | |
| 9 | 2 8 | gt0ne0ii | ⊢ ; 1 0 ≠ 0 |
| 10 | 9 | a1i | ⊢ ( 𝑘 ∈ ℕ → ; 1 0 ≠ 0 ) |
| 11 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 12 | 7 10 11 | expne0d | ⊢ ( 𝑘 ∈ ℕ → ( ; 1 0 ↑ 𝑘 ) ≠ 0 ) |
| 13 | divrec | ⊢ ( ( 9 ∈ ℂ ∧ ( ; 1 0 ↑ 𝑘 ) ∈ ℂ ∧ ( ; 1 0 ↑ 𝑘 ) ≠ 0 ) → ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = ( 9 · ( 1 / ( ; 1 0 ↑ 𝑘 ) ) ) ) | |
| 14 | 1 6 12 13 | mp3an2i | ⊢ ( 𝑘 ∈ ℕ → ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = ( 9 · ( 1 / ( ; 1 0 ↑ 𝑘 ) ) ) ) |
| 15 | 7 10 11 | exprecd | ⊢ ( 𝑘 ∈ ℕ → ( ( 1 / ; 1 0 ) ↑ 𝑘 ) = ( 1 / ( ; 1 0 ↑ 𝑘 ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( 𝑘 ∈ ℕ → ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) = ( 9 · ( 1 / ( ; 1 0 ↑ 𝑘 ) ) ) ) |
| 17 | 14 16 | eqtr4d | ⊢ ( 𝑘 ∈ ℕ → ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) ) |
| 18 | 17 | sumeq2i | ⊢ Σ 𝑘 ∈ ℕ ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) |
| 19 | 2 9 | rereccli | ⊢ ( 1 / ; 1 0 ) ∈ ℝ |
| 20 | 19 | recni | ⊢ ( 1 / ; 1 0 ) ∈ ℂ |
| 21 | 0re | ⊢ 0 ∈ ℝ | |
| 22 | 2 8 | recgt0ii | ⊢ 0 < ( 1 / ; 1 0 ) |
| 23 | 21 19 22 | ltleii | ⊢ 0 ≤ ( 1 / ; 1 0 ) |
| 24 | 19 | absidi | ⊢ ( 0 ≤ ( 1 / ; 1 0 ) → ( abs ‘ ( 1 / ; 1 0 ) ) = ( 1 / ; 1 0 ) ) |
| 25 | 23 24 | ax-mp | ⊢ ( abs ‘ ( 1 / ; 1 0 ) ) = ( 1 / ; 1 0 ) |
| 26 | 1lt10 | ⊢ 1 < ; 1 0 | |
| 27 | recgt1 | ⊢ ( ( ; 1 0 ∈ ℝ ∧ 0 < ; 1 0 ) → ( 1 < ; 1 0 ↔ ( 1 / ; 1 0 ) < 1 ) ) | |
| 28 | 2 8 27 | mp2an | ⊢ ( 1 < ; 1 0 ↔ ( 1 / ; 1 0 ) < 1 ) |
| 29 | 26 28 | mpbi | ⊢ ( 1 / ; 1 0 ) < 1 |
| 30 | 25 29 | eqbrtri | ⊢ ( abs ‘ ( 1 / ; 1 0 ) ) < 1 |
| 31 | geoisum1c | ⊢ ( ( 9 ∈ ℂ ∧ ( 1 / ; 1 0 ) ∈ ℂ ∧ ( abs ‘ ( 1 / ; 1 0 ) ) < 1 ) → Σ 𝑘 ∈ ℕ ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) = ( ( 9 · ( 1 / ; 1 0 ) ) / ( 1 − ( 1 / ; 1 0 ) ) ) ) | |
| 32 | 1 20 30 31 | mp3an | ⊢ Σ 𝑘 ∈ ℕ ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) = ( ( 9 · ( 1 / ; 1 0 ) ) / ( 1 − ( 1 / ; 1 0 ) ) ) |
| 33 | 1 3 9 | divreci | ⊢ ( 9 / ; 1 0 ) = ( 9 · ( 1 / ; 1 0 ) ) |
| 34 | 1 3 9 | divcan2i | ⊢ ( ; 1 0 · ( 9 / ; 1 0 ) ) = 9 |
| 35 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 36 | 3 35 20 | subdii | ⊢ ( ; 1 0 · ( 1 − ( 1 / ; 1 0 ) ) ) = ( ( ; 1 0 · 1 ) − ( ; 1 0 · ( 1 / ; 1 0 ) ) ) |
| 37 | 3 | mulridi | ⊢ ( ; 1 0 · 1 ) = ; 1 0 |
| 38 | 3 9 | recidi | ⊢ ( ; 1 0 · ( 1 / ; 1 0 ) ) = 1 |
| 39 | 37 38 | oveq12i | ⊢ ( ( ; 1 0 · 1 ) − ( ; 1 0 · ( 1 / ; 1 0 ) ) ) = ( ; 1 0 − 1 ) |
| 40 | 10m1e9 | ⊢ ( ; 1 0 − 1 ) = 9 | |
| 41 | 36 39 40 | 3eqtrri | ⊢ 9 = ( ; 1 0 · ( 1 − ( 1 / ; 1 0 ) ) ) |
| 42 | 34 41 | eqtri | ⊢ ( ; 1 0 · ( 9 / ; 1 0 ) ) = ( ; 1 0 · ( 1 − ( 1 / ; 1 0 ) ) ) |
| 43 | 9re | ⊢ 9 ∈ ℝ | |
| 44 | 43 2 9 | redivcli | ⊢ ( 9 / ; 1 0 ) ∈ ℝ |
| 45 | 44 | recni | ⊢ ( 9 / ; 1 0 ) ∈ ℂ |
| 46 | 35 20 | subcli | ⊢ ( 1 − ( 1 / ; 1 0 ) ) ∈ ℂ |
| 47 | 45 46 3 9 | mulcani | ⊢ ( ( ; 1 0 · ( 9 / ; 1 0 ) ) = ( ; 1 0 · ( 1 − ( 1 / ; 1 0 ) ) ) ↔ ( 9 / ; 1 0 ) = ( 1 − ( 1 / ; 1 0 ) ) ) |
| 48 | 42 47 | mpbi | ⊢ ( 9 / ; 1 0 ) = ( 1 − ( 1 / ; 1 0 ) ) |
| 49 | 33 48 | oveq12i | ⊢ ( ( 9 / ; 1 0 ) / ( 9 / ; 1 0 ) ) = ( ( 9 · ( 1 / ; 1 0 ) ) / ( 1 − ( 1 / ; 1 0 ) ) ) |
| 50 | 9pos | ⊢ 0 < 9 | |
| 51 | 43 2 50 8 | divgt0ii | ⊢ 0 < ( 9 / ; 1 0 ) |
| 52 | 44 51 | gt0ne0ii | ⊢ ( 9 / ; 1 0 ) ≠ 0 |
| 53 | 45 52 | dividi | ⊢ ( ( 9 / ; 1 0 ) / ( 9 / ; 1 0 ) ) = 1 |
| 54 | 32 49 53 | 3eqtr2i | ⊢ Σ 𝑘 ∈ ℕ ( 9 · ( ( 1 / ; 1 0 ) ↑ 𝑘 ) ) = 1 |
| 55 | 18 54 | eqtri | ⊢ Σ 𝑘 ∈ ℕ ( 9 / ( ; 1 0 ↑ 𝑘 ) ) = 1 |