This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 . This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017) (Proof shortened by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geoihalfsum | ⊢ Σ 𝑘 ∈ ℕ ( 1 / ( 2 ↑ 𝑘 ) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn | ⊢ 2 ∈ ℂ | |
| 2 | 1 | a1i | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) |
| 3 | 2ne0 | ⊢ 2 ≠ 0 | |
| 4 | 3 | a1i | ⊢ ( 𝑘 ∈ ℕ → 2 ≠ 0 ) |
| 5 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 6 | 2 4 5 | exprecd | ⊢ ( 𝑘 ∈ ℕ → ( ( 1 / 2 ) ↑ 𝑘 ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 7 | 6 | sumeq2i | ⊢ Σ 𝑘 ∈ ℕ ( ( 1 / 2 ) ↑ 𝑘 ) = Σ 𝑘 ∈ ℕ ( 1 / ( 2 ↑ 𝑘 ) ) |
| 8 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 9 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 10 | halfge0 | ⊢ 0 ≤ ( 1 / 2 ) | |
| 11 | absid | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) | |
| 12 | 9 10 11 | mp2an | ⊢ ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) |
| 13 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 14 | 12 13 | eqbrtri | ⊢ ( abs ‘ ( 1 / 2 ) ) < 1 |
| 15 | geoisum1 | ⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( abs ‘ ( 1 / 2 ) ) < 1 ) → Σ 𝑘 ∈ ℕ ( ( 1 / 2 ) ↑ 𝑘 ) = ( ( 1 / 2 ) / ( 1 − ( 1 / 2 ) ) ) ) | |
| 16 | 8 14 15 | mp2an | ⊢ Σ 𝑘 ∈ ℕ ( ( 1 / 2 ) ↑ 𝑘 ) = ( ( 1 / 2 ) / ( 1 − ( 1 / 2 ) ) ) |
| 17 | 1mhlfehlf | ⊢ ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) | |
| 18 | 17 | oveq2i | ⊢ ( ( 1 / 2 ) / ( 1 − ( 1 / 2 ) ) ) = ( ( 1 / 2 ) / ( 1 / 2 ) ) |
| 19 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 20 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 21 | 19 1 20 3 | divne0i | ⊢ ( 1 / 2 ) ≠ 0 |
| 22 | 8 21 | dividi | ⊢ ( ( 1 / 2 ) / ( 1 / 2 ) ) = 1 |
| 23 | 16 18 22 | 3eqtri | ⊢ Σ 𝑘 ∈ ℕ ( ( 1 / 2 ) ↑ 𝑘 ) = 1 |
| 24 | 7 23 | eqtr3i | ⊢ Σ 𝑘 ∈ ℕ ( 1 / ( 2 ↑ 𝑘 ) ) = 1 |