This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 1 0 ^ 1 + 9 / 1 0 ^ 2 + 9 / 1 0 ^ 3 + ... , is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007) (Revised by AV, 8-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0.999... | |- sum_ k e. NN ( 9 / ( ; 1 0 ^ k ) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn | |- 9 e. CC |
|
| 2 | 10re | |- ; 1 0 e. RR |
|
| 3 | 2 | recni | |- ; 1 0 e. CC |
| 4 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 5 | expcl | |- ( ( ; 1 0 e. CC /\ k e. NN0 ) -> ( ; 1 0 ^ k ) e. CC ) |
|
| 6 | 3 4 5 | sylancr | |- ( k e. NN -> ( ; 1 0 ^ k ) e. CC ) |
| 7 | 3 | a1i | |- ( k e. NN -> ; 1 0 e. CC ) |
| 8 | 10pos | |- 0 < ; 1 0 |
|
| 9 | 2 8 | gt0ne0ii | |- ; 1 0 =/= 0 |
| 10 | 9 | a1i | |- ( k e. NN -> ; 1 0 =/= 0 ) |
| 11 | nnz | |- ( k e. NN -> k e. ZZ ) |
|
| 12 | 7 10 11 | expne0d | |- ( k e. NN -> ( ; 1 0 ^ k ) =/= 0 ) |
| 13 | divrec | |- ( ( 9 e. CC /\ ( ; 1 0 ^ k ) e. CC /\ ( ; 1 0 ^ k ) =/= 0 ) -> ( 9 / ( ; 1 0 ^ k ) ) = ( 9 x. ( 1 / ( ; 1 0 ^ k ) ) ) ) |
|
| 14 | 1 6 12 13 | mp3an2i | |- ( k e. NN -> ( 9 / ( ; 1 0 ^ k ) ) = ( 9 x. ( 1 / ( ; 1 0 ^ k ) ) ) ) |
| 15 | 7 10 11 | exprecd | |- ( k e. NN -> ( ( 1 / ; 1 0 ) ^ k ) = ( 1 / ( ; 1 0 ^ k ) ) ) |
| 16 | 15 | oveq2d | |- ( k e. NN -> ( 9 x. ( ( 1 / ; 1 0 ) ^ k ) ) = ( 9 x. ( 1 / ( ; 1 0 ^ k ) ) ) ) |
| 17 | 14 16 | eqtr4d | |- ( k e. NN -> ( 9 / ( ; 1 0 ^ k ) ) = ( 9 x. ( ( 1 / ; 1 0 ) ^ k ) ) ) |
| 18 | 17 | sumeq2i | |- sum_ k e. NN ( 9 / ( ; 1 0 ^ k ) ) = sum_ k e. NN ( 9 x. ( ( 1 / ; 1 0 ) ^ k ) ) |
| 19 | 2 9 | rereccli | |- ( 1 / ; 1 0 ) e. RR |
| 20 | 19 | recni | |- ( 1 / ; 1 0 ) e. CC |
| 21 | 0re | |- 0 e. RR |
|
| 22 | 2 8 | recgt0ii | |- 0 < ( 1 / ; 1 0 ) |
| 23 | 21 19 22 | ltleii | |- 0 <_ ( 1 / ; 1 0 ) |
| 24 | 19 | absidi | |- ( 0 <_ ( 1 / ; 1 0 ) -> ( abs ` ( 1 / ; 1 0 ) ) = ( 1 / ; 1 0 ) ) |
| 25 | 23 24 | ax-mp | |- ( abs ` ( 1 / ; 1 0 ) ) = ( 1 / ; 1 0 ) |
| 26 | 1lt10 | |- 1 < ; 1 0 |
|
| 27 | recgt1 | |- ( ( ; 1 0 e. RR /\ 0 < ; 1 0 ) -> ( 1 < ; 1 0 <-> ( 1 / ; 1 0 ) < 1 ) ) |
|
| 28 | 2 8 27 | mp2an | |- ( 1 < ; 1 0 <-> ( 1 / ; 1 0 ) < 1 ) |
| 29 | 26 28 | mpbi | |- ( 1 / ; 1 0 ) < 1 |
| 30 | 25 29 | eqbrtri | |- ( abs ` ( 1 / ; 1 0 ) ) < 1 |
| 31 | geoisum1c | |- ( ( 9 e. CC /\ ( 1 / ; 1 0 ) e. CC /\ ( abs ` ( 1 / ; 1 0 ) ) < 1 ) -> sum_ k e. NN ( 9 x. ( ( 1 / ; 1 0 ) ^ k ) ) = ( ( 9 x. ( 1 / ; 1 0 ) ) / ( 1 - ( 1 / ; 1 0 ) ) ) ) |
|
| 32 | 1 20 30 31 | mp3an | |- sum_ k e. NN ( 9 x. ( ( 1 / ; 1 0 ) ^ k ) ) = ( ( 9 x. ( 1 / ; 1 0 ) ) / ( 1 - ( 1 / ; 1 0 ) ) ) |
| 33 | 1 3 9 | divreci | |- ( 9 / ; 1 0 ) = ( 9 x. ( 1 / ; 1 0 ) ) |
| 34 | 1 3 9 | divcan2i | |- ( ; 1 0 x. ( 9 / ; 1 0 ) ) = 9 |
| 35 | ax-1cn | |- 1 e. CC |
|
| 36 | 3 35 20 | subdii | |- ( ; 1 0 x. ( 1 - ( 1 / ; 1 0 ) ) ) = ( ( ; 1 0 x. 1 ) - ( ; 1 0 x. ( 1 / ; 1 0 ) ) ) |
| 37 | 3 | mulridi | |- ( ; 1 0 x. 1 ) = ; 1 0 |
| 38 | 3 9 | recidi | |- ( ; 1 0 x. ( 1 / ; 1 0 ) ) = 1 |
| 39 | 37 38 | oveq12i | |- ( ( ; 1 0 x. 1 ) - ( ; 1 0 x. ( 1 / ; 1 0 ) ) ) = ( ; 1 0 - 1 ) |
| 40 | 10m1e9 | |- ( ; 1 0 - 1 ) = 9 |
|
| 41 | 36 39 40 | 3eqtrri | |- 9 = ( ; 1 0 x. ( 1 - ( 1 / ; 1 0 ) ) ) |
| 42 | 34 41 | eqtri | |- ( ; 1 0 x. ( 9 / ; 1 0 ) ) = ( ; 1 0 x. ( 1 - ( 1 / ; 1 0 ) ) ) |
| 43 | 9re | |- 9 e. RR |
|
| 44 | 43 2 9 | redivcli | |- ( 9 / ; 1 0 ) e. RR |
| 45 | 44 | recni | |- ( 9 / ; 1 0 ) e. CC |
| 46 | 35 20 | subcli | |- ( 1 - ( 1 / ; 1 0 ) ) e. CC |
| 47 | 45 46 3 9 | mulcani | |- ( ( ; 1 0 x. ( 9 / ; 1 0 ) ) = ( ; 1 0 x. ( 1 - ( 1 / ; 1 0 ) ) ) <-> ( 9 / ; 1 0 ) = ( 1 - ( 1 / ; 1 0 ) ) ) |
| 48 | 42 47 | mpbi | |- ( 9 / ; 1 0 ) = ( 1 - ( 1 / ; 1 0 ) ) |
| 49 | 33 48 | oveq12i | |- ( ( 9 / ; 1 0 ) / ( 9 / ; 1 0 ) ) = ( ( 9 x. ( 1 / ; 1 0 ) ) / ( 1 - ( 1 / ; 1 0 ) ) ) |
| 50 | 9pos | |- 0 < 9 |
|
| 51 | 43 2 50 8 | divgt0ii | |- 0 < ( 9 / ; 1 0 ) |
| 52 | 44 51 | gt0ne0ii | |- ( 9 / ; 1 0 ) =/= 0 |
| 53 | 45 52 | dividi | |- ( ( 9 / ; 1 0 ) / ( 9 / ; 1 0 ) ) = 1 |
| 54 | 32 49 53 | 3eqtr2i | |- sum_ k e. NN ( 9 x. ( ( 1 / ; 1 0 ) ^ k ) ) = 1 |
| 55 | 18 54 | eqtri | |- sum_ k e. NN ( 9 / ( ; 1 0 ^ k ) ) = 1 |