This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for multiplication. Theorem I.7 of Apostol p. 18. (Contributed by NM, 26-Jan-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulcan.1 | ⊢ 𝐴 ∈ ℂ | |
| mulcan.2 | ⊢ 𝐵 ∈ ℂ | ||
| mulcan.3 | ⊢ 𝐶 ∈ ℂ | ||
| mulcan.4 | ⊢ 𝐶 ≠ 0 | ||
| Assertion | mulcani | ⊢ ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ↔ 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcan.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | mulcan.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcan.3 | ⊢ 𝐶 ∈ ℂ | |
| 4 | mulcan.4 | ⊢ 𝐶 ≠ 0 | |
| 5 | 3 4 | pm3.2i | ⊢ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) |
| 6 | mulcan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ↔ 𝐴 = 𝐵 ) ) | |
| 7 | 1 2 5 6 | mp3an | ⊢ ( ( 𝐶 · 𝐴 ) = ( 𝐶 · 𝐵 ) ↔ 𝐴 = 𝐵 ) |