This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinite sum of A x. ( R ^ 1 ) + A x. ( R ^ 2 ) ... is ( A x. R ) / ( 1 - R ) . (Contributed by NM, 2-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geoisum1c | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → Σ 𝑘 ∈ ℕ ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) = ( ( 𝐴 · 𝑅 ) / ( 1 − 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → 𝐴 ∈ ℂ ) | |
| 2 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → 𝑅 ∈ ℂ ) | |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( 1 − 𝑅 ) ∈ ℂ ) | |
| 5 | 3 2 4 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( 1 − 𝑅 ) ∈ ℂ ) |
| 6 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( abs ‘ 𝑅 ) < 1 ) | |
| 7 | 1re | ⊢ 1 ∈ ℝ | |
| 8 | 7 | ltnri | ⊢ ¬ 1 < 1 |
| 9 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 10 | fveq2 | ⊢ ( 1 = 𝑅 → ( abs ‘ 1 ) = ( abs ‘ 𝑅 ) ) | |
| 11 | 9 10 | eqtr3id | ⊢ ( 1 = 𝑅 → 1 = ( abs ‘ 𝑅 ) ) |
| 12 | 11 | breq1d | ⊢ ( 1 = 𝑅 → ( 1 < 1 ↔ ( abs ‘ 𝑅 ) < 1 ) ) |
| 13 | 8 12 | mtbii | ⊢ ( 1 = 𝑅 → ¬ ( abs ‘ 𝑅 ) < 1 ) |
| 14 | 13 | necon2ai | ⊢ ( ( abs ‘ 𝑅 ) < 1 → 1 ≠ 𝑅 ) |
| 15 | 6 14 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → 1 ≠ 𝑅 ) |
| 16 | subeq0 | ⊢ ( ( 1 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( ( 1 − 𝑅 ) = 0 ↔ 1 = 𝑅 ) ) | |
| 17 | 16 | necon3bid | ⊢ ( ( 1 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( ( 1 − 𝑅 ) ≠ 0 ↔ 1 ≠ 𝑅 ) ) |
| 18 | 3 2 17 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( ( 1 − 𝑅 ) ≠ 0 ↔ 1 ≠ 𝑅 ) ) |
| 19 | 15 18 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( 1 − 𝑅 ) ≠ 0 ) |
| 20 | 1 2 5 19 | divassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( ( 𝐴 · 𝑅 ) / ( 1 − 𝑅 ) ) = ( 𝐴 · ( 𝑅 / ( 1 − 𝑅 ) ) ) ) |
| 21 | geoisum1 | ⊢ ( ( 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → Σ 𝑘 ∈ ℕ ( 𝑅 ↑ 𝑘 ) = ( 𝑅 / ( 1 − 𝑅 ) ) ) | |
| 22 | 21 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → Σ 𝑘 ∈ ℕ ( 𝑅 ↑ 𝑘 ) = ( 𝑅 / ( 1 − 𝑅 ) ) ) |
| 23 | 22 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( 𝐴 · Σ 𝑘 ∈ ℕ ( 𝑅 ↑ 𝑘 ) ) = ( 𝐴 · ( 𝑅 / ( 1 − 𝑅 ) ) ) ) |
| 24 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 25 | 1zzd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → 1 ∈ ℤ ) | |
| 26 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑅 ↑ 𝑛 ) = ( 𝑅 ↑ 𝑘 ) ) | |
| 27 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) | |
| 28 | ovex | ⊢ ( 𝑅 ↑ 𝑘 ) ∈ V | |
| 29 | 26 27 28 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝑅 ↑ 𝑘 ) ) |
| 30 | 29 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝑅 ↑ 𝑘 ) ) |
| 31 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 32 | expcl | ⊢ ( ( 𝑅 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ↑ 𝑘 ) ∈ ℂ ) | |
| 33 | 2 31 32 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑅 ↑ 𝑘 ) ∈ ℂ ) |
| 34 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 35 | 34 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → 1 ∈ ℕ0 ) |
| 36 | elnnuz | ⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 37 | 36 30 | sylan2br | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝑅 ↑ 𝑘 ) ) |
| 38 | 2 6 35 37 | geolim2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ) ⇝ ( ( 𝑅 ↑ 1 ) / ( 1 − 𝑅 ) ) ) |
| 39 | seqex | ⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ) ∈ V | |
| 40 | ovex | ⊢ ( ( 𝑅 ↑ 1 ) / ( 1 − 𝑅 ) ) ∈ V | |
| 41 | 39 40 | breldm | ⊢ ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ) ⇝ ( ( 𝑅 ↑ 1 ) / ( 1 − 𝑅 ) ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 42 | 38 41 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 43 | 24 25 30 33 42 1 | isummulc2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( 𝐴 · Σ 𝑘 ∈ ℕ ( 𝑅 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) ) |
| 44 | 20 23 43 | 3eqtr2rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → Σ 𝑘 ∈ ℕ ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) = ( ( 𝐴 · 𝑅 ) / ( 1 − 𝑅 ) ) ) |