This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldneg | |- ( X e. CC -> ( ( invg ` CCfld ) ` X ) = -u X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negid | |- ( X e. CC -> ( X + -u X ) = 0 ) |
|
| 2 | negcl | |- ( X e. CC -> -u X e. CC ) |
|
| 3 | cnring | |- CCfld e. Ring |
|
| 4 | ringgrp | |- ( CCfld e. Ring -> CCfld e. Grp ) |
|
| 5 | 3 4 | ax-mp | |- CCfld e. Grp |
| 6 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 7 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 8 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 9 | eqid | |- ( invg ` CCfld ) = ( invg ` CCfld ) |
|
| 10 | 6 7 8 9 | grpinvid1 | |- ( ( CCfld e. Grp /\ X e. CC /\ -u X e. CC ) -> ( ( ( invg ` CCfld ) ` X ) = -u X <-> ( X + -u X ) = 0 ) ) |
| 11 | 5 10 | mp3an1 | |- ( ( X e. CC /\ -u X e. CC ) -> ( ( ( invg ` CCfld ) ` X ) = -u X <-> ( X + -u X ) = 0 ) ) |
| 12 | 2 11 | mpdan | |- ( X e. CC -> ( ( ( invg ` CCfld ) ` X ) = -u X <-> ( X + -u X ) = 0 ) ) |
| 13 | 1 12 | mpbird | |- ( X e. CC -> ( ( invg ` CCfld ) ` X ) = -u X ) |