This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| lidlnegcl.n | |- N = ( invg ` R ) |
||
| Assertion | lidlnegcl | |- ( ( R e. Ring /\ I e. U /\ X e. I ) -> ( N ` X ) e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| 2 | lidlnegcl.n | |- N = ( invg ` R ) |
|
| 3 | rlmvneg | |- ( invg ` R ) = ( invg ` ( ringLMod ` R ) ) |
|
| 4 | 2 3 | eqtri | |- N = ( invg ` ( ringLMod ` R ) ) |
| 5 | 4 | fveq1i | |- ( N ` X ) = ( ( invg ` ( ringLMod ` R ) ) ` X ) |
| 6 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( R e. Ring /\ I e. U /\ X e. I ) -> ( ringLMod ` R ) e. LMod ) |
| 8 | simpr | |- ( ( R e. Ring /\ I e. U ) -> I e. U ) |
|
| 9 | lidlval | |- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) |
|
| 10 | 1 9 | eqtri | |- U = ( LSubSp ` ( ringLMod ` R ) ) |
| 11 | 8 10 | eleqtrdi | |- ( ( R e. Ring /\ I e. U ) -> I e. ( LSubSp ` ( ringLMod ` R ) ) ) |
| 12 | 11 | 3adant3 | |- ( ( R e. Ring /\ I e. U /\ X e. I ) -> I e. ( LSubSp ` ( ringLMod ` R ) ) ) |
| 13 | simp3 | |- ( ( R e. Ring /\ I e. U /\ X e. I ) -> X e. I ) |
|
| 14 | eqid | |- ( LSubSp ` ( ringLMod ` R ) ) = ( LSubSp ` ( ringLMod ` R ) ) |
|
| 15 | eqid | |- ( invg ` ( ringLMod ` R ) ) = ( invg ` ( ringLMod ` R ) ) |
|
| 16 | 14 15 | lssvnegcl | |- ( ( ( ringLMod ` R ) e. LMod /\ I e. ( LSubSp ` ( ringLMod ` R ) ) /\ X e. I ) -> ( ( invg ` ( ringLMod ` R ) ) ` X ) e. I ) |
| 17 | 7 12 13 16 | syl3anc | |- ( ( R e. Ring /\ I e. U /\ X e. I ) -> ( ( invg ` ( ringLMod ` R ) ) ` X ) e. I ) |
| 18 | 5 17 | eqeltrid | |- ( ( R e. Ring /\ I e. U /\ X e. I ) -> ( N ` X ) e. I ) |