This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero ideal contains a nonzero element. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlnz.u | |- U = ( LIdeal ` R ) |
|
| lidlnz.z | |- .0. = ( 0g ` R ) |
||
| Assertion | lidlnz | |- ( ( R e. Ring /\ I e. U /\ I =/= { .0. } ) -> E. x e. I x =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlnz.u | |- U = ( LIdeal ` R ) |
|
| 2 | lidlnz.z | |- .0. = ( 0g ` R ) |
|
| 3 | 1 2 | lidl0cl | |- ( ( R e. Ring /\ I e. U ) -> .0. e. I ) |
| 4 | 3 | snssd | |- ( ( R e. Ring /\ I e. U ) -> { .0. } C_ I ) |
| 5 | 4 | 3adant3 | |- ( ( R e. Ring /\ I e. U /\ I =/= { .0. } ) -> { .0. } C_ I ) |
| 6 | simp3 | |- ( ( R e. Ring /\ I e. U /\ I =/= { .0. } ) -> I =/= { .0. } ) |
|
| 7 | 6 | necomd | |- ( ( R e. Ring /\ I e. U /\ I =/= { .0. } ) -> { .0. } =/= I ) |
| 8 | df-pss | |- ( { .0. } C. I <-> ( { .0. } C_ I /\ { .0. } =/= I ) ) |
|
| 9 | 5 7 8 | sylanbrc | |- ( ( R e. Ring /\ I e. U /\ I =/= { .0. } ) -> { .0. } C. I ) |
| 10 | pssnel | |- ( { .0. } C. I -> E. x ( x e. I /\ -. x e. { .0. } ) ) |
|
| 11 | 9 10 | syl | |- ( ( R e. Ring /\ I e. U /\ I =/= { .0. } ) -> E. x ( x e. I /\ -. x e. { .0. } ) ) |
| 12 | velsn | |- ( x e. { .0. } <-> x = .0. ) |
|
| 13 | 12 | necon3bbii | |- ( -. x e. { .0. } <-> x =/= .0. ) |
| 14 | 13 | anbi2i | |- ( ( x e. I /\ -. x e. { .0. } ) <-> ( x e. I /\ x =/= .0. ) ) |
| 15 | 14 | exbii | |- ( E. x ( x e. I /\ -. x e. { .0. } ) <-> E. x ( x e. I /\ x =/= .0. ) ) |
| 16 | df-rex | |- ( E. x e. I x =/= .0. <-> E. x ( x e. I /\ x =/= .0. ) ) |
|
| 17 | 15 16 | bitr4i | |- ( E. x ( x e. I /\ -. x e. { .0. } ) <-> E. x e. I x =/= .0. ) |
| 18 | 11 17 | sylib | |- ( ( R e. Ring /\ I e. U /\ I =/= { .0. } ) -> E. x e. I x =/= .0. ) |